加载中…
个人资料
维索卡亚安娜
维索卡亚安娜
  • 博客等级:
  • 博客积分:0
  • 博客访问:20,856
  • 关注人气:189
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

科技日报---创新材料将建筑变成巨大的碳汇

(2025-02-01 13:47:52)
标签:

科技日报

碳汇

建筑材料

分类: 翻译

关键词:生物炭材料、碳储存、混凝土、建筑材料

题记:改变建筑材料的组成,进而改变气候变暖;将生物炭材料融入混凝土之中,这一创新技术将改变人类的生活环境,同时也可以推动循环经济的发展。“混凝土是迄今为止世界上最受欢迎的建筑材料:每年生产超过200亿吨。”这一惊人数字的背后,意味着碳储存的具体量化。经科学家们的计算,我们得知:“世界上10%的混凝土骨料产量是可碳化的,它可以吸收十亿吨的二氧化碳。”设想一下,今后人类居住和工作的建筑都具有储碳的功能,那是多么地神奇呀!

Innovative Materials Turning Buildings Into Massive Carbon Sinks

创新材料将建筑变成巨大的碳汇

科技日报---创新材料将建筑变成巨大的碳汇

Storing carbon dioxide in common construction materials could help address climate change goals, according to a new study by researchers at UC Davis and Stanford University. Because of the very large amount of concrete produced worldwide every year, incorporating carbon into concrete would be especially impactful. Shown is a block of concrete made with biochar material. Credit: Sabbie Miller, UC Davis

加州大学戴维斯分校和斯坦福大学的研究人员的一项新研究表明,在普通建筑材料中储存二氧化碳有助于实现气候变化目标。由于全球每年生产的混凝土量非常大,将碳掺入混凝土将产生特别大的影响。图中展示的是一块由生物炭材料制成的混凝土。图片来源:加州大学戴维斯分校Sabbie Miller

Discover how everyday building materials could be the key to massive carbon storage, according to a new study.

Technologies like biochar in concrete and biomass-based plastics could turn buildings into carbon sinks, driving forward both economic and environmental progress.

根据一项新的研究,发现日常建筑材料如何成为大规模碳储存的关键。

混凝土中的生物炭和生物质塑料等技术可以将建筑物变成碳汇,推动经济和环境进步。

Carbon Storage in Construction Materials

Construction materials like concrete and plastic could play a significant role in storing billions of tons of carbon dioxide, according to a recent study by researchers from the University of California, Davis, and Stanford University. Published today (January 9) in the journal Science, the study highlights how incorporating CO2 storage into buildings, alongside efforts to decarbonize the economy, could help achieve global greenhouse gas reduction targets.

建筑材料中的碳储存

加州大学戴维斯分校和斯坦福大学的研究人员最近的一项研究表明,混凝土和塑料等建筑材料在储存数十亿吨二氧化碳方面可以发挥重要作用。该研究于今天(19日)发表在《科学》杂志上,强调了将二氧化碳储存与经济脱碳相结合,如何有助于实现全球温室气体减排目标。

“The potential is pretty large,” said Elisabeth Van Roijen, the study’s lead author and a former graduate student at UC Davis.

“潜力相当大,”该研究的主要作者、加州大学戴维斯分校的前研究生Elisabeth Van Roijen说。

Rethinking Carbon Sequestration

Carbon sequestration involves capturing carbon dioxide — either directly from its source or from the atmosphere — stabilizing it, and storing it in a way that prevents it from contributing to climate change. Traditional methods include injecting CO2 underground or storing it in the deep ocean, but these options come with technical hurdles and environmental risks.

重新思考碳封存

碳封存涉及直接从源头或大气中捕获二氧化碳,使其稳定,并以防止其对气候变化产生影响的方式储存。传统的方法包括将二氧化碳注入地下或储存在深海中,但这些方法存在技术障碍和环境风险。

“What if, instead, we can leverage materials that we already produce in large quantities to store carbon?” Van Roijen said.

Van Roijen说:“如果我们可以利用我们已经大量生产的材料来储存碳呢?”

Exploring Carbon Capture in Building Materials

Working with Sabbie Miller, associate professor of civil and environmental engineering at UC Davis, and Steve Davis at Stanford University, Van Roijen calculated the potential to store carbon in a wide range of common building materials including concrete (cement and aggregates), asphalt, plastics, wood and brick.

探索建筑材料中的碳捕获

Van Roijen与加州大学戴维斯分校土木与环境工程副教授Sabbie Miller和斯坦福大学Steve Davis合作,计算了混凝土(水泥和骨料)、沥青、塑料、木材和砖等各种常见建筑材料中储存碳的潜力。

More than 30 billion tons of conventional versions of these materials are produced worldwide every year.

常规状态下,全球每年生产超过300亿吨的建筑材料。

Concrete’s Gigaton Potential

The carbon-storing approaches studied included adding biochar (made by heating waste biomass) into concrete; using artificial rocks that can be loaded with carbon as concrete and asphalt pavement aggregate; plastics and asphalt binders based on biomass rather than fossil petroleum sources; and including biomass fiber into bricks. These technologies are at different stages of readiness, with some still being investigated at a lab or pilot scale and others already available for adoption.

混凝土的巨大潜力

所研究的碳储存方法包括在混凝土中添加生物炭(通过加热废生物质制成);使用可以装载碳的人造岩石作为混凝土和沥青路面骨料;基于生物质而非化石石油来源的塑料和沥青粘合剂;并将生物质纤维掺入砖中。这些技术正处于不同的准备阶段,其中一些仍在实验室或试点规模进行研究,另一些已经可以采用。

Researchers found that while bio-based plastics could take up the largest amount of carbon by weight, by far the largest potential for carbon storage is in using carbonated aggregates to make concrete. That’s because concrete is by far the world’s most popular building material: Over 20 billion tons are produced every year.

研究人员发现,虽然生物基塑料可以按重量计算吸收最多的碳,但到目前为止,碳储存的最大潜力在于使用碳酸骨料制造混凝土。这是因为混凝土是迄今为止世界上最受欢迎的建筑材料:每年生产超过200亿吨。

“If feasible, a little bit of storage in concrete could go a long way,” Miller said. The team calculated that if 10% of the world’s concrete aggregate production were carbonateable, it could absorb a gigaton of CO2.

米勒说:“如果可行的话,在混凝土中储存一点可以走很长的路。”该团队计算出,如果世界上10%的混凝土骨料产量是可碳化的,它可以吸收十亿吨的二氧化碳。

Bio-Based Innovations and Circular Economies

The feedstocks for these new processes for making building materials are mostly low-value waste materials such as biomass, Van Roijen said. Implementing these new processes would enhance their value, creating economic development and promoting a circular economy, she said.

生物基创新与循环经济

Van Roijen说,这些制造建筑材料的新工艺的原料大多是生物质等低价值废料。她说,实施这些新工艺将提高其价值,创造经济发展,促进循环经济。

Some technology development is needed, particularly in cases where material performance and net-storage potential of individual manufacturing methods must be validated. However, many of these technologies are just waiting to be adopted, Miller said.

需要一些技术开发,特别是在必须验证单个制造方法的材料性能和净存储潜力的情况下。然而,米勒说,其中许多技术正等待被采用。


0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有