加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

科技日报--细菌听起来像什么?

(2022-04-30 15:25:53)
标签:

科技日报

细菌的声音

分类: 翻译

What Do Bacteria Sound Like? Bacterial Soundtracks Revealed by Nanotechnology.

细菌听起来像什么? 纳米技术揭示的细菌声迹。


A graphene drum can reveal the sound of bacteria.
Have you ever wondered if bacteria make distinctive sounds? If we could listen to bacteria, we would be able to know whether they are alive or not. When bacteria are killed using an antibiotic, those sounds would stop – unless of course, the bacteria are resistant to the antibiotic. This is exactly what a team of researchers from TU Delft, led by dr. Farbod Alijani, has now managed to do: they captured low-level noise of a single bacterium using graphene. Now, their research is published in the journal Nature Nanotechnology.
石墨烯鼓可以揭示细菌的声音。
你有没有想过细菌是否会发出独特的声音? 如果我们能听到细菌的声音,我们就能知道它们是否还活着。当使用抗生素杀死细菌时,这些声音就会停止;当然,除非细菌对抗生素有抗药性。这正是由 TU Delft 博士Farbod Alijani领导的一组研究人员努力所做的。他们使用石墨烯捕获了单个细菌的低水平噪声。 现在,他们的研究发表在《自然纳米技术》杂志上。
The sound of a single bacterium
Farbod Alijani’s team at Delft University of Technology (TU Delft) was originally investigating the fundamentals of the physical mechanics of graphene, when a curious idea struck them. They wondered what would happen if this extremely sensitive material came into contact with a single biological object. “Graphene is a form of carbon consisting of a single layer of atoms and is also known as the wonder material,” says Alijani. “It’s very strong with nice electrical and mechanical properties, and it’s also extremely sensitive to external forces.”
单个细菌的声音
代尔夫特理工大学 (TU Delft) 的 Farbod Alijani 团队最初是在研究石墨烯物理力学的基础知识时,突然产生了一个奇怪的想法。他们想知道如果这种极其敏感的材料与单个生物物体接触会发生什么。“石墨烯是一种由单层原子组成的碳,也被称为神奇材料,”阿里贾尼说。“它非常坚固,具有良好的电气和机械性能,而且对外力也极为敏感。”
Farbod Alijani’s team of researchers initiated a collaboration with the nanobiology group of Cees Dekker and the nanomechanics group of Peter Steeneken. Together with PhD student Irek Roslon and postdoc Dr. Aleksandre Japaridze, the scientists ran their first experiments using E. coli bacteria. Cees Dekker: “What we saw was striking! When a single bacterium adheres to the surface of a graphene drum, it generates random oscillations with amplitudes as low as a few nanometers that we could detect. We could hear the sound of a single bacterium!”
Farbod Alijani 的研究团队发起了与 Cees Dekker 的纳米生物学小组和 Peter Steeneken 的纳米力学小组的合作。科学家们与博士生 Irek Roslon 和博士后 Aleksandre Japaridze 博士一起使用大肠杆菌进行了他们的第一次实验。 Cees Dekker:“我们看到的是惊人的! 当单个细菌粘附在石墨烯鼓的表面时,它会产生随机振荡,其振幅低至我们可以检测到的几纳米。我们能听到单个细菌的声音!”
Punching a graphene drum with a bacterium
The extremely small oscillations are a result of the biological processes of the bacteria with main contribution from their flagella (tails on the cell surface that propel bacteria). “To understand how tiny these flagellar beats on graphene are, it’s worth saying that they are at least 10 billion times smaller than a boxer’s punch when reaching a punch bag. Yet, these nanoscale beats can be converted to sound tracks and listened to — and how cool is that,” Alijani says.
用细菌冲压石墨烯鼓
极小的振荡是细菌生物过程的结果,主要来自它们的鞭毛(细胞表面的尾巴推动细菌)。 “要了解石墨烯上的这些鞭毛节拍有多小,值得一提的是,当到达沙袋时,它们至少比拳击手的出拳小 100 亿倍。然而,这些纳米级节拍可以转换成音轨并被聆听,这多么酷,”阿里贾尼说。
Artist’s impression of a graphene drum detecting nanomotion of a single bacterium. Credit: Irek Roslon, TU Delft
艺术家对检测单个细菌纳米运动的石墨烯鼓的印象。图片来源:Irek Roslon,代尔夫特理工大学

Graphene for fast detection of antibiotic resistance
This research has enormous implications for the detection of antibiotic resistance. The experimental results were unequivocal: If the bacteria were resistant to the antibiotic, the oscillations just continued at the same level. When the bacteria were susceptible to the drug, vibrations decreased until one or two hours later, but then they were completely gone. Thanks to the high sensitivity of graphene drums, the phenomenon can be detected using just a single cell.
石墨烯用于快速检测抗生素耐药性
这项研究对检测抗生素耐药性具有重大意义。实验结果是明确的:如果细菌对抗生素有抗药性,那么振荡只会以相同的水平继续。当细菌对药物敏感时,振动会减弱,直到一两个小时后,它们就完全消失了。 由于石墨烯鼓的高灵敏度,只需一个细胞即可检测到这种现象。
Farbod Alijani: “For the future, we aim at optimizing our single-cell graphene antibiotic sensitivity platform and validate it against a variety of pathogenic samples. So that eventually it can be used as an effective diagnostic toolkit for fast detection of antibiotic resistance in clinical practice.” Peter Steeneken concludes: “This would be an invaluable tool in the fight against antibiotic resistance, an ever-increasing threat to human health around the world.”
Farbod Alijani:“对于未来,我们的目标是优化我们的单细胞石墨烯抗生素敏感性平台,并针对各种致病样本对其进行验证。因此,最终它可以作为一种有效的诊断工具包,在临床实践中快速检测抗生素耐药性。” Peter Steeneken 总结道:“这将是对抗抗生素耐药性的宝贵工具,抗生素耐药性对世界各地的人类健康构成日益严重的威胁。”

0

阅读 收藏 喜欢 打印举报/Report
前一篇:读庄子名句
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有