科技日报--了不起的工程细菌

标签:
科技日报工程细菌 |
分类: 翻译 |
Engineered Bacteria Convert Captured Carbon Dioxide Into Valuable Chemicals for Fuels, Fabric, and Cosmetics
工程细菌将捕获的二氧化碳转化为用于燃料、织物和化妆品的有价值化学品
Synthetic biologists have engineered bacteria to convert carbon waste into valuable chemicals. The carbon-negative approach could contribute to a net-zero emissions economy. Credit: Justin Muir
合成生物学家已经设计出将碳废物转化为有价值的化学物质的细菌。负碳方法有助于实现净零排放经济。图片来源:贾斯汀缪尔
Engineered Bacteria Upcycle Carbon Waste Into Valuable Chemicals
Bacteria are known for
breaking down lactose to make yogurt and sugar to make beer. Now
researchers led by
工程细菌将碳废料升级改造为有价值的化学品
众所周知,细菌会分解乳糖来制造酸奶和制造啤酒的糖。现在,由西北大学和 LanzaTech 领导的研究人员已经利用细菌分解废弃的二氧化碳 (CO2) 来制造有价值的工业化学品。
In a new pilot study, the
researchers selected, engineered, and optimized a bacteria strain
and then successfully demonstrated its ability to convert
CO2
在一项新的中试研究中,研究人员选择、设计并优化了一种细菌菌株,然后成功证明了其将二氧化碳转化为丙酮和异丙醇 (IPA) 的能力。
Not only does this new gas fermentation process remove greenhouse gases from the atmosphere, but it also avoids using fossil fuels, which are typically needed to generate acetone and IPA. After performing life-cycle analysis, the team found the carbon-negative platform could reduce greenhouse gas emissions by 160% as compared to conventional processes, if widely adopted.
这种新的气体发酵过程不仅可以从大气中去除温室气体,还可以避免使用化石燃料,而化石燃料通常是生成丙酮和 IPA 所必需的。 在进行生命周期分析后,该团队发现,如果广泛采用,与传统工艺相比,负碳平台可以减少 160% 的温室气体排放。
The study will be
published today (February 21, 2022) in the journal
该研究将于今天(2022 年 2 月 21 日)发表在《自然生物技术》杂志上。
“The accelerating climate
crisis, combined with rapid population growth, pose some of the
most urgent challenges to humankind, all linked to the unabated
release and accumulation of CO2
“气候危机的加速,加上人口的快速增长,对人类构成了一些最紧迫的挑战,所有这些都与整个生物圈中二氧化碳的不断释放和积累有关,”该研究的共同资深作者西北大学的迈克尔· 朱维特说 。“通过利用我们与生物学合作的能力,在可持续和可再生的基础上,在需要的时间和地点制造所需的东西,我们可以开始利用可用的二氧化碳来改变生物经济。”
Jewett is the Walter P. Murphy Professor of Chemical and Biological Engineering at Northwestern’s McCormick School of Engineering and director of the Center for Synthetic Biology. He co-led the study with Michael Koepke and Ching Leang, both researchers at LanzaTech.
Jewett 是西北大学麦考密克工程学院的 Walter P. Murphy 化学和生物工程教授,也是合成生物学中心的主任。 他与 LanzaTech 的研究人员 Michael Koepke 和 Ching Leang 共同领导了这项研究。
Necessary industrial bulk
and platform chemicals, acetone, and IPA are found nearly
everywhere, with a combined global market topping $10 billion.
Widely used as a disinfectant and antiseptic, IPA is the basis for
one of the two World Health Organization-recommended sanitizer
formulas, which are highly effective in killing
the
必要的工业散装和平台化学品、丙酮和 IPA 几乎随处可见,全球市场总和超过 100 亿美元。 IPA 广泛用作消毒剂和防腐剂,是世界卫生组织推荐的两种消毒剂配方之一的基础,可高效杀死 SARS-CoV-2 病毒。丙酮是许多塑料和合成纤维、稀释聚酯树脂、清洁工具和指甲油去除剂的溶剂。
While these chemicals are
incredibly useful, they are generated from fossil resources,
leading to climate-warming CO2
虽然这些化学物质非常有用,但它们是由化石资源产生的,会导致气候变暖的二氧化碳排放。
To manufacture these
chemicals more sustainably, the researchers developed a new gas
fermentation process. They started with Clostridium
autoethanogenum, an anaerobic bacterium engineered at LanzaTech.
Then, the researchers used synthetic biology tools to reprogram the
bacterium to ferment CO2
为了更可持续地制造这些化学品,研究人员开发了一种新的气体发酵工艺。 他们从自产乙醇梭菌开始,这是一种由 LanzaTech 设计的厌氧细菌。然后,研究人员使用合成生物学工具对细菌进行了重新编程,以发酵二氧化碳来制造丙酮和 IPA。
“These innovations, led by cell-free strategies that guided both strain engineering and optimization of pathway enzymes, accelerated time to production by more than a year,” Jewett said.
“这些创新由引导菌株工程和途径酶优化的无细胞策略引领,将生产时间缩短了一年多,”Jewett 说。
The Northwestern and LanzaTech teams believe the developed strains and fermentation process will translate to industrial scale. The approach also could potentially be applied to create streamlined processes for generating other valuable chemicals.
Northwestern 和 LanzaTech 团队相信开发的菌株和发酵过程将转化为工业规模。 该方法还可能用于创建生产其他有价值化学品的简化流程。
“This discovery is a major step forward in avoiding a climate catastrophe,” said Jennifer Holmgren, LanzaTech CEO. “Today, most of our commodity chemicals are derived exclusively from new fossil resources such as oil, natural gas or coal. Acetone and IPA are two examples with a combined global market of $10 billion. The acetone and IPA pathways developed will accelerate the development of other new products by closing the carbon cycle for their use in multiple industries.”
“这一发现是在避免气候灾难方面向前迈出的重要一步,”LanzaTech 首席执行官 Jennifer Holmgren 说。 “今天,我们的大部分商品化学品都完全来自石油、天然气或煤炭等新的化石资源。丙酮和 IPA 是两个例子,全球市场合计达 100 亿美元。 开发的丙酮和 IPA 途径将通过关闭碳循环来加速其他新产品的开发,以便它们在多个行业中使用。”