汽轮机汽缸与转子的相对膨胀
(2020-05-15 17:04:13)高压大容量机组,差胀是起动中的一个关键,达到起动时间短,差胀值小,必须要及时分析差胀变化的原因。准确合理使用汽缸夹层及法兰加热装置,分析运行工况的变化,确保差胀控制在安全范围内,冷态起动,进汽温度,真空,转速等都是影响差胀的因素,例如:真空下降,维持同一转速,进汽量增加,高压差胀要上升,但中、低压缸摩擦鼓风热量因流量增加容易带走,可能差胀要下降些。又如:转速对差胀影响,因为鼓风摩擦热量和叶片长度成正比,和转速三次方成正比,转速升高,产生的鼓风摩擦热量增大,差胀会增加,但升至某一转速,蒸汽流量增加后可把鼓风热量带走的比较多,对差胀的影响就小了,另外,对于大直径转子在金属部件受热情况不变,当转速上升时,转子受离心力影响,引起转子径向拉伸变粗,而使转子轴向长度缩短,差胀减小,一般大容量低压转子较突出,还有调速汽门的开度变化对差胀影响也较大,因调门开度变化,使蒸汽的节流作用发生变化,汽机进汽参数也发生变化。由于汽缸影响迟缓,使差胀变化,如果新蒸汽参数未变,调门开大,调节级温度升高,差胀上升。
差胀向负方向增大,一般在热态起动和滑参数停机,负荷下降或汽温急剧下降时出现,负差胀增大,使喷嘴出口与叶片进口轴向间隙减小,由于提高经济运行性,喷嘴出口与叶片间隙尽量保持的小些,因此,负差胀允许的限额要小于正差胀允许限额。负差胀的增加是比较危险的,容易发生叶片进口侧与喷嘴隔板的动静摩擦或轴封齿的碰擦,尤在高压末级及高压前几级的轴向间隙较小更为危险。
汽轮机在启停和工况变化时,由于转子和汽缸之间存在温差,因此其轴向存在膨胀差,或简称胀差。以单缸汽轮机为例,汽缸死点在排汽口中心附近,转子与汽缸的相对死点在推力轴承推力面处。汽缸由死点向进汽端膨胀,前猫爪通过横销使推力轴承向前移动,从而带动转子移动,而转子本身又以相对死点为基准向排汽端膨胀,转子与汽缸的相对膨胀关系可以看作汽缸转子均以推力面为基准向排汽端膨胀。胀差的大小意味着汽轮机动、静轴向间隙相对于静止时的变化,正差胀表示自喷嘴(静叶)至动叶间轴向间隙增大;反之,负差胀表示该轴向间隙减小。但必须指出由于大型多缸汽轮机的相对膨胀关系比较复杂,对于其中个别的通流部分来说,正负差胀对其轴向间隙的影响恰好与上述相反,例如国产N200-12.74/535/535机组的低压前汽缸即是如此。