加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

Matlab 4 parameters logistic regression 四参数逻辑回归分析

(2013-11-21 09:18:50)
标签:

matlab基础问题

分类: Matlab
Matlab 4参数的逻辑回归分析
Four Parameters logistic regression
    The Four Parameters Logistic Regression or 4PL nonlinear regression model is commonly used for curve-fitting analysis in bioassays or immunoassays such as ELISAs or dose-response curves. 
    It is characterized by it classic or sigmoidal shape that fits the bottom and top plateaus of the curve, the EC50, and the slope factor (Hill slope). This curve is symmetrical around its inflection point. 

 The 4PL equation is:
  F(x) = D+(A-D)/(1+(x/C)^B)
  where:
  A = Minimum asymptote. In a bioassay where you have a standard curve,
  this can be thought of as the response value at 0 standard concentration.
 
  B = Hill's slope. The Hill's slope refers to the steepness of the curve.
  It could either be positive or negative.
 
  C = Inflection point. The inflection point is defined as the point on the
  curve where the curvature changes direction or signs. C is the
  concentration of analyte where y=(D-A)/2.
 
  D = Maximum asymptote. In an bioassay where you have a standard curve,
  this can be thought of as the response value for infinite standard
  concentration. 
  
 
  Syntax: [cf G]=L4P(x,y,st,L,U)
  
  Inputs: 
            X and Y (mandatory) - data points.
            X is a Nx1 column vector and Y must have the same rows number
            of X. If Y is a NxM matrix (N points and M replicates), L5P
            will generate a  column vector computing means for each row.
            The standard deviations of the rows will be used as weights of
            regression.
 
            st = starting points. This is a 1x4 vector of starting points
            that have to be used to start the process of not linear
            fitting. If this vector is not provided, L4P will set the
            starting points on the basis of x and y data.
 
            L = Lower bounds of parameters. This is a 1x4 vector of lower
            bounds of the 4 parameters. If this vector is not provided, L4P
            will set it on the basis of x and y data.
 
            U = Upper bounds of parameters. This is a 1x4 vector of upper
            bounds of the 4 parameters. If this vector is not provided, L4P
            will set it on the basis of x and y data.
 
  Outputs:
            cf = the FIT object
            G = goodness-of-fit measures, for the given inputs, in the
            structure G. G includes the fields: 
            -- SSE         sum of squares due to error
            -- R2          coefficient of determination or R^2
            -- adjustedR2  degree of freedom adjusted R^2
            -- stdError    fit standard error or root mean square error

Example:
 
  x=[0 4.5 10.6 19.7 40 84 210]; y=[0.0089 0.0419 0.0873 0.2599 0.7074 1.528 2.7739];
 
  Calling on MatLab the function: [cf G]=L4P(x,y)
  
            Answer is:
  
  cf = 
  
       General model:
       cf(x) = D+(A-D)/(1+(x/C)^B)
       Coefficients (with 95% confidence bounds):
         A =    0.001002  (-0.04594, 0.04794)
         B =       1.515  (1.293, 1.738)
         C =         108  (86.58, 129.4)
         D =       3.784  (3.302, 4.266)
  
  G = 
  
             sse: 0.0012
         rsquare: 0.9998
             dfe: 3
      adjrsquare: 0.9996
            rmse: 0.0200
 
  hold on; plot(x,y,'ro'); plot(cf,'r'); hold off
  this will plot the curve.
 
相关问题:L4P相关知识matlab-code

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有