加载中…

加载中...

新型机器学习技术都有哪些(上)

转载 2019-03-28 17:23:33
标签: 机器学习

说到人工智能,大家可能想到的都是什么Siri、小爱同学等,其实这些也只是人工智能的一个产品而已。其实我们要想了解人工智能,就需要了解机器学习,因为机器学习是人工智能的核心,其实机器学习发展到现在有很多新型的机器学习技术,那么这些新型的机器学习技术都有哪些呢?下面我们就给大家解答一下这个问题。

其实新型的机器学习技术现在越来越被大家关注,因为这些技术在解决实际问题总提供了十分有效的方法。那么都有什么呢?具体就是深度学习、强化学习、对抗学习、对偶学习、迁移学习、分布式学习、以及元学习。下面我们逐一介绍一下这些知识。

首先我们给大家介绍一下深度学习,深度学习是一种不同于传统的机器学习方法,深度学习是一类端到端的学习方法。基于多层的非线性神经网络,深度学习可以从原始数据直接学习,自动抽取特征并逐层抽象,最终实现回归、分类或排序等目的。在深度学习的驱动下,人们在计算机视觉、语音处理、自然语言方面相继取得了突破,达到或甚至超过了人类水平。深度学习的成功主要归功于三大因素,分别是大数据、大模型、大计算,而这三个方向都是现在重点研究的课题。而在过去的几十年中,很多不同的深度神经网络结构被提出,比如,卷积神经网络,被广泛应用于计算机视觉,如图像分类、物体识别、图像分割、视频分析等等;循环神经网络,能够对变长的序列数据进行处理,被广泛应用于自然语言理解、语音处理等技术。编解码模型是深度学习中常见的一个框架,多用于图像或序列生成,例如比较热的机器翻译、文本摘要、图像描述问题。由此可见,深度学习是一个实用的学习方式。

然后我们给大家介绍一下强化学习,其实强化学习是有很多案例的,比如说阿尔法狗,就是其中的一个案例,而这个比赛也让人工智能再一次的被大家所关注,同时也让强化学习成为机器学习领域的一个热点研究方向。其实强化学习是机器学习的一个子领域,研究智能体如何在动态系统或者环境中以试错的方式进行学习,通过与系统或环境进行交互获得的奖赏指导行为,从而最大化累积奖赏或长期回报。由于其一般性,该问题在许多其他学科中也进行了研究,例如博弈论、控制理论、运筹学、信息论、多智能体系统、群体智能、统计学和遗传算法。这些算法都是十分实用的。

在这篇文章中我们给大家介绍了很多关于机器学习算法的相关知识,通过对这些知识的了解相信大家已经知道了机器学习算法的优点。在后面的文章中我们会继续为大家介绍更多有用的知识。


阅读(0) 评论(0) 收藏(0) 转载(0) 举报/Report

评论

重要提示:警惕虚假中奖信息
0条评论展开
相关阅读
加载中,请稍后
CDA鏁版嵁鍒嗘瀽甯坃浜哄ぇ缁忔祹璁哄潧
  • 博客等级:
  • 博客积分:0
  • 博客访问:38,784
  • 关注人气:0
  • 荣誉徽章:

相关博文

推荐博文

新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

新浪公司 版权所有