加载中…

加载中...

机器学习中涉及到哪些数学工具?

转载 2019-03-27 17:09:30
标签: 机器学习

在机器学习中涉及到很多的工具,其中最重要的当属数学工具。机器学习涉及到的数据工具总共有三种,分别是线性代数、概率统计和最优化理论。在这篇文章中我们就来详细给大家介绍一下这些知识,让大家在日常的机器学习中可以更好地运用到数学工具。

首先我们给大家介绍一下线性代数,线性代数起到的一个最主要的作用就是把具体的事物转化成抽象的数学模型。不管我们的世界当中有多么纷繁复杂,我们都可以把它转化成一个向量,或者一个矩阵的形式。这就是线性代数最主要的作用。所以,在线性代数解决表示这个问题的过程中,我们主要包括这样两个部分,一方面是线性空间理论,也就是我们说的向量、矩阵、变换这样一些问题。第二个是矩阵分析。给定一个矩阵,我们可以对它做所谓的SVD分解,也就是做奇异值分解,或者是做其他的一些分析。这样两个部分共同构成了我们机器学习当中所需要的线性代数。

然后我们说一下概率统计,在评价过程中,我们需要使用到概率统计。概率统计包括了两个方面,一方面是数理统计,另外一方面是概率论。一般来说数理统计比较好理解,我们机器学习当中应用的很多模型都是来源于数理统计。像最简单的线性回归,还有逻辑回归,它实际上都是来源于统计学。在具体地给定了目标函数之后,我们在实际地去评价这个目标函数的时候,我们会用到一些概率论。当给定了一个分布,我们要求解这个目标函数的期望值。在平均意义上,这个目标函数能达到什么程度呢?这个时候就需要使用到概率论。所以说在评价这个过程中,我们会主要应用到概率统计的一些知识。

最后我们说一下最优化理论,其实关于优化,就不用说了,我们肯定用到的是最优化理论。在最优化理论当中,主要的研究方向是凸优化。凸优化当然它有些限制,但它的好处也很明显,比如说能够简化这个问题的解。因为在优化当中我们都知道,我们要求的是一个最大值,或者是最小值,但实际当中我们可能会遇到一些局部的极大值,局部的极小值,还有鞍点这样的点。凸优化可以避免这个问题。在凸优化当中,极大值就是最大值,极小值也就是最小值。但在实际当中,尤其是引入了神经网络还有深度学习之后,凸优化的应用范围越来越窄,很多情况下它不再适用,所以这里面我们主要用到的是无约束优化。同时,在神经网络当中应用最广的一个算法,一个优化方法,就是反向传播。

在这篇文章中我们给大家介绍了机器学习涉及到的数学工具,分别是线性代数、概率统计和最优化理论。相信大家看了这篇文章以后已经对这些工具的作用有所了解,希望这篇文章能够更好地帮助大家。


阅读(0) 评论(0) 收藏(0) 转载(0) 举报/Report

评论

重要提示:警惕虚假中奖信息
0条评论展开
相关阅读
加载中,请稍后
CDA鏁版嵁鍒嗘瀽甯坃浜哄ぇ缁忔祹璁哄潧
  • 博客等级:
  • 博客积分:0
  • 博客访问:38,784
  • 关注人气:0
  • 荣誉徽章:

相关博文

推荐博文

新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

新浪公司 版权所有