Opencv学习笔记二:matchTemplate匹配

标签:
模板匹配matchtemplateopencv |
分类: 上下求索 |
- 使用opencv的matchTemplate函数,在一个图像上搜索和输入图像匹配的位置
- 使用opencv的minMaxLoc函数,在给定的序列中搜索最大和最小值(匹配的合适位置)
- 需要两基素:
- 移动,是指在一个方向(左或右、上或下)上移动小块图像。在每一个位置,代表匹配程度“好”或“坏”的矩阵会被计算出来(或者小块图像和原图像的相似度)
- 对覆盖图像I的图像T的每个位置,我们保存方法在结果矩阵R中。每个位置(x, y)包含匹配结果:
- 在实践中,我们使用minMaxLoc函数在矩阵R中定位匹配度最高的值(或者最低的值,根据匹配方法而定)。
- 这个项目是做什么的?
- 下载代码:点击代码
- 代码一览:
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include
#include
using namespace std;
using namespace cv;
/// Global Variables
Mat img; Mat templ; Mat result;
char* image_window = "Source Image";
char* result_window = "Result window";
int match_method;
int max_Trackbar = 5;
/// Function Headers
void MatchingMethod( int, void* );
int main( int argc, char** argv )
{
}
void MatchingMethod( int, void* )
{
}
解释
1、声明一些全局变量,比如图像、模板、结果矩阵,还有匹配方法和窗口名字
Mat img; Mat templ; Mat result;
char* image_window = "Source Image";
char* result_window = "Result window";
int match_method;
int max_Trackbar = 5;
img = imread( argv[1], 1 );
templ = imread( argv[2], 1 );
namedWindow( image_window, CV_WINDOW_AUTOSIZE );
namedWindow( result_window, CV_WINDOW_AUTOSIZE );
char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );
waitKey(0);
return 0;
Mat img_display;
img.copyTo( img_display );
int result_cols =img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;
result.create( result_rows, result_cols, CV_32FC1 );
matchTemplate( img, templ, result, match_method );
normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );
double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc;
minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );
if( match_method== CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
{ matchLoc = minLoc; }
else
{ matchLoc = maxLoc; }
rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
imshow( image_window, img_display );
imshow( result_window, result );