加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

非线性优化-matlab函数库-optimset

(2012-06-26 14:26:28)
标签:

非线性优化

optimset

it

创建或编辑一个最优化参数选项

句法规则

options = optimset('param1',value1,'param2',value2,...) %设置所有参数及其值,未设置的为默认值options = optimset                                                         %全部设置为默认                                                   
options = optimset(optimfun)                                        %设置与最优化函数有关的参数为默认
options = optimset(oldopts,'param1',value1,...)             %复制一个已存在的选项,修改特定项
options = optimset(oldopts,newopts)                            %用另一个新选项合并目前选项

因素

Parameter Value Description
Display
'off' | 'iter' | 'final' | 'notify'
'off' 表示不显示输出; 'iter' 显示每次迭代的结果; 'final' 只显示最终结果; 'notify' 只在函数不收敛的时候显示结果.
MaxFunEvals
positive integer 函数允许估值的最大值.
MaxIter
positive integer 迭代次数的最大值.
TolFun
positive scalar 函数迭代的终止误差.
TolX
positive scalar 结束迭代的X值.
  • L - 只用于大规模数据拟合
  • M - 中等规模
  • B - 两者都可以
Parameter Name Description L, M, B Used by Functions
DerivativeCheck       
Compare user-supplied analytic derivatives (gradients or Jacobian) to finite differencing derivatives. M fgoalattain, fmincon, fminimax, fminunc, fseminf, fsolve, lsqcurvefit, lsqnonlin
Diagnostics
Print diagnostic information about the function to be minimized or solved. B All but fminbnd, fminsearch, fzero, and lsqnonneg
DiffMaxChange
Maximum change in variables for finite difference derivatives. M fgoalattain, fmincon, fminimax, fminunc, fseminf, fsolve, lsqcurvefit, lsqnonlin
DiffMinChange
Minimum change in variables for finite difference derivatives. M fgoalattain, fmincon, fminimax, fminunc, fseminf, fsolve, lsqcurvefit, lsqnonlin
Display
Level of display. 'off' displays no output; 'iter' displays output at each iteration; 'final' displays just the final output; 'notify' displays output only if function does not converge. B All. See the individual function reference pages for the values that apply.
GoalsExactAchieve
Number of goals to achieve exactly (do not over- or underachieve). M fgoalattain
GradConstr
Gradients for the nonlinear constraints defined by the user. M fgoalattain, fmincon, fminimax
GradObj
Gradient(s) for the objective function(s) defined by the user. B fgoalattain, fmincon, fminimax, fminunc, fseminf
Hessian
If 'on', function uses user-defined Hessian, or Hessian information (when using HessMult), for the objective function. If 'off', function approximates the Hessian using finite differences. L fmincon, fminunc
HessMult
Hessian multiply function defined by the user. L fmincon, fminunc, quadprog
HessPattern
Sparsity pattern of the Hessian for finite differencing. The size of the matrix is n-by-n, where n is the number of elements in x0, the starting point. L fmincon, fminunc
HessUpdate
Quasi-Newton updating scheme. M fminunc
Jacobian
If 'on', function uses user-defined Jacobian, or Jacobian information (when using JacobMult), for the objective function. If 'off', function approximates the Jacobian using finite differences. B fsolve, lsqcurvefit, lsqnonlin
JacobMult
Jacobian multiply function defined by the user. L fsolve, lsqcurvefit, lsqlin, lsqnonlin
JacobPattern
Sparsity pattern of the Jacobian for finite differencing. The size of the matrix is m-by-n, where m is the number of values in the first argument returned by the user-specified function fun, and n is the number of elements in x0, the starting point. L fsolve, lsqcurvefit, lsqnonlin
LargeScale
Use large-scale algorithm if possible. B fmincon, fminunc, fsolve, linprog, lsqcurvefit, lsqlin, lsqnonlin, quadprog
LevenbergMarquardt
Chooses Levenberg-Marquardt over Gauss-Newton algorithm. M lsqcurvefit, lsqnonlin
LineSearchType
Line search algorithm choice. M fminunc, fsolve, lsqcurvefit, lsqnonlin
MaxFunEvals
Maximum number of function evaluations allowed. B fgoalattain, fminbnd, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, lsqcurvefit, lsqnonlin
MaxIter
Maximum number of iterations allowed. B All but fzero and lsqnonneg
MaxPCGIter
Maximum number of PCG iterations allowed. L fmincon, fminunc, fsolve, lsqcurvefit, lsqlin, lsqnonlin, quadprog
MeritFunction
Use goal attainment/minimax merit function (multiobjective) vs. fmincon (single objective). M fgoalattain, fminimax
MinAbsMax
Number of F(x) to minimize the worst case absolute values M fminimax
NonlEqnAlgorithm
Choose Levenberg-Marquardt or Gauss-Newton over the trust-region dogleg algorithm. M fsolve
PrecondBandWidth
Upper bandwidth of preconditioner for PCG. L fmincon, fminunc, fsolve, lsqcurvefit, lsqlin, lsqnonlin, quadprog
TolCon
Termination tolerance on the constraint violation. B fgoalattain, fmincon, fminimax, fseminf
TolFun
Termination tolerance on the function value. B fgoalattain, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, linprog (large-scale only), lsqcurvefit, lsqlin (large-scale only), lsqnonlin, quadprog (large-scale only)
TolPCG
Termination tolerance on the PCG iteration. L fmincon, fminunc, fsolve, lsqcurvefit, lsqlin, lsqnonlin, quadprog
TolX
Termination tolerance on x. B All functions except the medium-scale algorithms for linprog, lsqlin, and quadprog
TypicalX
Typical x values. The length of the vector is equal to the number of elements in x0, the starting point. L fmincon, fminunc, fsolve, lsqcurvefit, lsqlin, lsqnonlin, quadprog

Examples

      options = optimset('Display','iter','TolFun',1e-8)

This statement makes a copy of the options structure called options, changing the value of the TolX parameter and storing new values in optnew.

  • optnew = optimset(options,'TolX',1e-4);
    
    

This statement returns an optimization options structure that contains all the parameter names and default values relevant to the function fminbnd.

  • optimset('fminbnd')
    

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有