计算几何之--------最小圆覆盖问题
(2012-03-28 09:01:37)
标签:
计算几何算法 |
分类: Algorithm |
今天,zjoi出发日,居然还在做题!
好吧吐槽一下,于是正题。
恩,最小圆覆盖,很经典的问题。题目大概是,平面上n个点,求一个半径最小的圆,能够覆盖所有的点。
算法有点难懂,于是讲讲我的理解。
如果要求一个最小覆盖圆,这个圆至少要由三个点确定。有一种算法就是任意取三个点作圆,然后判断距离圆心最远的点是否在圆内,若在,则完成;若不在则用最远点更新这个圆。这里不仔细介绍,具体见:http://wenku.baidu.com/view/584b6d3e5727a5e9856a610d
这里介绍的算法是,先任意选取两个点,以这两个点的连线为直径作圆。再以此判断剩余的点,看它们是否都在圆内(或圆上),如果都在,说明这个圆已经找到。如果没有都在:假设我们用的最开始的两个点为p[1],p[2],并且找到的第一个不在圆内(或圆上)的点为p[i],于是我们用这个点p[i]去寻找覆盖p[1]到p[i-1]的最小覆盖圆。
那么,过确定点p[i]的从p[1]到p[i-1]的最小覆盖圆应该如何求呢?
我们先用p[1]和p[i]做圆,再从2到i-1判断是否有点不在这个圆上,如果都在,则说明已经找到覆盖1到i-1的圆。如果没有都在:假设我们找到第一个不在这个圆上的点为p[j],于是我们用两个已知点p[j]与p[i]去找覆盖1到j-1的最小覆盖圆。
而对于两个已知点p[j]与p[i]求最小覆盖圆,只要从1到j-1中,第k个点求过p[k],p[j],p[i]三个点的圆,再判断k+1到j-1是否都在圆上,若都在,说明找到圆;若有不在的,则再用新的点p[k]更新圆即可。
于是,这个问题就被转化为若干个子问题来求解了。
由于三个点确定一个圆,我们的过程大致上做的是从没有确定点,到有一个确定点,再到有两个确定点,再到有三个确定点来求圆的工作。
关于正确性的证明以及复杂度的计算这里就不介绍了,可以去看完整的算法介绍:http://wenku.baidu.com/view/162699d63186bceb19e8bbe6
恩。关于细节方面。
a.通过三个点如何求圆?
b.如何求三角形外接圆?
c.如何求两条直线交点?
d.于是木有了。。
恩。都讲清楚了。于是是代码:
#include<math.h>
struct
{
};
TPoint a[1005],d;
double r;
double
{
}
double multiply(TPoint
{
}
void MiniDiscWith2Point(TPoint
{