加载中…
个人资料
Pandora
Pandora
  • 博客等级:
  • 博客积分:0
  • 博客访问:5,133
  • 关注人气:8
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
相关博文
推荐博文
谁看过这篇博文
加载中…
正文 字体大小:

高二数学期末复习知识点总结

(2011-07-19 15:41:59)
标签:

直线的倾斜角

导数公式

直线方程

斜率

侧面积

教育

一、直线与圆:

1、直线的倾斜角 的范围是

在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为 , 就叫做直线的倾斜角。当直线 与 轴重合或平行时,规定倾斜角为0;

两条平行线 与 的距离是

2、圆的标准方程: .⑵圆的一般方程:

注意能将标准方程化为一般方程

3、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与 轴垂直的直线.

4、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

5、点 到直线 的距离公式 ;

6、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.① 相离  ② 相切  ③ 相交

7、直线方程:⑴点斜式:直线过点 斜率为 ,则直线方程为 ,

⑵斜截式:直线在 轴上的截距为 和斜率 ,则直线方程为

8、 , ,① ∥ , ;  ② .

直线 与直线 的位置关系:

(1)平行  A1/A2=B1/B2  注意检验 (2)垂直  A1A2+B1B2=0

9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)  直线与圆相交所得弦长

二、圆锥曲线方程:

1、椭圆: ①方程 (a>b>0)注意还有一个;②定义: |PF1|+|PF2|=2a>2c;  ③ e=  ④长轴长为2a,短轴长为2b,焦距为2c;  a2=b2+c2 

2、抛物线 :①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ; 焦点弦 =x1+x2+p;

3、双曲线:①方程 (a,b>0) 注意还有一个;②定义: ||PF1|-|PF2||=2a<2c;  ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c; 渐进线 或  c2=a2+b2

4、直线被圆锥曲线截得的弦长公式:

5、注意解析几何与向量结合问题:

1、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即

2、向量的运算过程中完全平方公式等照样适用:如

3、模的计算:|a|= .  算模可以先算向量的平方

 

三、直线、平面、简单几何体:

1、学会三视图的分析:

2、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

⑵直线与平面所成的角:直线与射影所成的角

3、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴 o'x'、o'y'、使∠x'o'y'=45°(或135° ); (2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

4、位置关系的证明(主要方法):注意立体几何证明的书写

(1)直线与平面平行:①线线平行 线面平行;②面面平行 线面平行。

(2)平面与平面平行:①线面平行 面面平行。

(3)垂直问题:线线垂直 线面垂直 面面垂直。核心是线面垂直:垂直平面内的两条相交直线

5、表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:

⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:①表面积:S= ;②体积:V=

四、导数:  导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)

1、导数的定义: 在点 处的导数记作 .

2.常见函数的导数公式: ① ;② ;③ ;

⑤ ;⑥ ;⑦ ;⑧ 

3.导数的四则运算法则:

4. 导数的几何物理意义:曲线 在点 处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t) 表示即时速度。a=v/(t)  表示加速度。

5.导数的应用:

(1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么 为减函数;

注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。

(2)求极值的步骤:

①求导数 ;

②求方程 的根;

③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;

(3)求可导函数最大值与最小值的步骤。

0

阅读 评论 收藏 转载 喜欢 打印举报/Report
  • 评论加载中,请稍候...
发评论

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有