加载中…
个人资料
小溪
小溪
  • 博客等级:
  • 博客积分:0
  • 博客访问:28,088
  • 关注人气:19
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
相关博文
推荐博文
正文 字体大小:

上海新教材中考数学总复习汇总四

(2009-12-10 15:00:22)
标签:

2010中考

上海新教材

数学

复习

汇总

教育

分类: **其他学科教学资源信息**

以下是总复习要点    

1课  实数的有关概念

〖知识点〗有理数、无理数、实数、非负数、相反数、倒数、数的绝对值

大纲要求

1.   使学生复习巩固有理数、实数的有关概念.

2.   了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

3.   会求一个数的相反数和绝对值,会比较实数的大小

4.   画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

考查重点:

1.   有理数、无理数、实数、非负数概念;

2.相反数、倒数、数的绝对值概念;

3.在已知中,以非负数a2、|a|、(a≥0)之和为零作为条件,解决有关问题。

实数的有关概念   (1)实数的组成

 

  (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一不可),

  实数与数轴上的点是一一对应的。

  数轴上任一点对应的数总大于这个点左边的点对应的数,

  (3)相反数: 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零).

  从数轴上看,互为相反数的两个数所对应的点关于原点对称.

  (4)绝对值

                                     

 

  从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离

  (5)倒数: 实数a(a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数.

考查题型:

以填空和选择题为主。

一、考查题型:

1.   -1的相反数的倒数是      

2.   已知|a+3|+=0,则实数(a+b)的相反数        

3.   数-3.14与-Л的大小关系是       

4.   和数轴上的点成一一对应关系的是        

5.   和数轴上表示数-3的点A距离等于2.5的B所表示的数是       

6.   在实数中Л,-,0, ,-3.14, 无理数有(  )

(A)1 个  (B)2个  (C)3个  (D)4个

7.一个数的绝对值等于这个数的相反数,这样的数是(  )

(A)非负数  (B)非正数  (C)负数  (D)正数

8.若x<-3,则|x+3|等于(   )

(A)x+3  (B)-x-3  (C)-x+3  (D)x-3

9.下列说法正确是(  )

(A)        有理数都是实数       (B)实数都是有理数

(B)        带根号的数都是无理数 (D)无理数都是开方开不尽的数

10.实数在数轴上的对应点的位置如图,比较下列每组数的大小:

(1)         c-b和d-a           

(2)         bc和ad     

二、考点训练:

1.判断题:

(1)如果a为实数,那么-a一定是负数;( )

(2)对于任何实数a与b,|a-b|=|b-a|恒成立;( )

(3)两个无理数之和一定是无理数;( )

(4)两个无理数之积不一定是无理数;( )

(5)任何有理数都有倒数;( )  (6)最小的负数是-1;( )

(7)a的相反数的绝对值是它本身;( )

(8)若|a|=2,|b|=3且ab>0,则a-b=-1;( )

2.把下列各数分别填入相应的集合里

-|-3|,21.3,-1.234,-,0,sin60°º,-,-, -,,

(-)0,3-2,ctg45°,1.2121121112......中

   无理数集合{        }  负分数集合{        }

   整数集合 {        }  非负数集合{        }

3.已知1<x<2,则|x-3|+等于(   )

(A)-2x (B)2 (C)2x  (D)-2

4.下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?

-3,  -1, 3, - 0.3,  3-1,  1 +,  3

互为相反数:      互为倒数:      互为负倒数:       

5.已知x、y是实数,且(X-)2和|y+2|互为相反数,求x,y的值 

6.a,b互为相反数,c,d互为倒数,m的绝对值是2,求+4m-3cd=           

7.已知=0,求a+b=           

三、解题指导:         

1.下列语句正确的是(  )

(A)无尽小数都是无理数 (B)无理数都是无尽小数

(C)带拫号的数都是无理数 (D)不带拫号的数一定不是无理数。

2.和数轴上的点一一对应的数是(  )(A)整数  (B)有理数   (C)无理数  (D)实数

3.零是(   )

(A)        最小的有理数     (B)绝对值最小的实数 

(C)最小的自然数     (D)最小的整数

4.如果a是实数,下列四种说法:(1)a2和|a|都是正数,(2)|a|=-a,那么a一定是负数,(3)a的倒数是,(4)a和-a的两个分别在原点的两侧,其中正确的是(  )

(A)0  (B)1  (C)2   (D)3

5.比较下列各组数的大小:

(1)                 (2)    (3)a<b<0时,  

6.若a,b满足=0,则的值是            

7.实数a,b,c在数轴上的对应点如图,其中O是原点,且|a|=|c|

(1)         判定a+b,  a+c,   c-b的符号

(2)         化简|a|-|a+b|+|a+c|+|c-b|

8.数轴上点A表示数-1,若AB=3,则点B所表示的数为                     

9.已知x<0,y>0,且y<|x|,用"<"连结x,-x,-|y|,y。

10.最大负整数、最小的正整数、最小的自然数、绝对值最小的实数各是什么?

11.绝对值、相反数、倒数、平方数、算术平方根、立方根是它本身的数各是什么?

12.把下列语句译成式子:

(1)a是负数  ;(2)a、b两数异号  ;(3)a、b互为相反数    ;

(4) a、b互为倒数    ;(5)x与y的平方和是非负数     ;

(6)c、d两数中至少有一个为零    ;(7)a、b两数均不为0     。

13.数轴上作出表示,,-的点。

四.独立训练:

+++1.0的相反数是  ,3-л的相反数是  ,  的相反数是   ;-л的绝对值是   ,0 的绝对值是  ,-的倒数是      

2.数轴上表示-3.2的点它离开原点的距离是   。

A表示的数是-,且AB=,则点B表示的数是    。

3 -,л,(1-)º,-,0.1313…,2cos60º,  -3-1 ,1.101001000…

(两1之间依次多一个0),中无理数有   ,整数有   ,负数有   。

4. 若a的相反数是27,则|a|=      ;5.若|a|=,则a=          

5.若实数x,y满足等式(x+3)2+|4-y|=0,则x+y的值是

6.实数可分为(   )

   (A)正数和零(B)有理数和无理数(C)负数和零 (D)正数和负数

7.若2a与1-a互为相反数,则a等于(   )(A)1    (B)-1      (C)      (D)

8.当a为实数时,=-a在数轴上对应的点在(   )

(C)        原点右侧(B)原点左侧(C)原点或原点的右侧(D)原点或原点左侧

*9.代数式++的所有可能的值有(   )

(A)2个    (B)3个    (C)4个   (D)无数个

10.已知实数a、b在数轴上对应点的位置如图

   (1)比较a-b与a+b的大小       (2)化简|b-a|+|a+b|

 

11.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|

试化简:|b-c|-|b-a|+|a-c-2b|-|c-a|

12.已知等腰三角形一边长为a,一边长b,且(2a-b)2+|9-a2|=0 。求它的周长。

*13.若3,m,5为三角形三边,化简:-

第2课  实数的运算

〖知识点〗有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。

大纲要求:

1.  了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。

2.  了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。

3.  了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。

        了解电子计算器使用基本过程。会用电子计算器进行四则运算。

考查重点:

1.  考查近似数、有效数字、科学计算法;

2.  考查实数的运算;

3.  计算器的使用。

实数的运算  (1)加法: 同号两数相加,取原来的符号,并把绝对值相加;

                      异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;

                    任何数与零相加等于原数。

   (2)减法         a-b=a+(-b)

  (3)乘法: 两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即

            

 

(4)除法  

 

(5)乘方    

(6)开方   如果x2=a且x≥0,那么 =x; 如果x3=a,那么

在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.

3.实数的运算律

  (1)加法交换律    a+b=b+a

  (2)加法结合律    (a+b)+c=a+(b+c)

  (3)乘法交换律    ab=ba.

  (4)乘法结合律    (ab)c=a(bc)

  (5)分配律        a(b+c)=ab+ac

其中a、b、c表示任意实数.运用运算律有时可使运算简便.

典型题型与习题

一、填空题:

1.我国数学家刘徽,是第一个找到计算圆周率π方法的人,他求出π的近似值是3.1416,如果取3.142是精确到  位,它有 个有效数字,分别是   

1.5972精确到百分位的近似数是     ;我国的国土面积约为9600000平方干米,用科学计数法表示为           平方干米。

2.按鍵顺序-1·2÷4=,结果是    

3.我国1990年的人口出生数为23784659人。保留三个有效数字的近似值是    人。

4.由四舍五入法得到的近似数3.10×104,它精确到     位。这个近似值的有效数字是      

5.2的相反数与倒数的和的绝对值等于          

6.若n为自然数时(-1)2n+1+(-1)2n=          .

7.查表得2.132=4.5,4.1053=69.18,则-21.32   。(-0.0213)2  ,0.41053   ,-(-410.5)3  。若8.3202=69.32,x2=6.932×105,则x=        .=2.107 =6.663 =       .

8.已知2a-b=4, 2(b-2a)2-3(b-2a)+1=      

9.已知:|x|=4,y2=且x>0,y<0,则x-y=      

二、选择题

1. 下列命题中:(1)几个有理数相乘,如果负因数个数是奇数,则积必为负;

(2)两数之积为1,那么这两数都是1或都是-1;(3)两个实数之和为正数,积为负数,则两数异号,且正数的绝对值大;(4)一个实数的偶次幂是正数,那么这个实数一定不等于零,其中错误的命题的个数是(  )(A)1 个  (B)2 个  (C)3个  (D)4个

2.近似数1.30所表示的准确数A的范围是(   )

(A)1.25≤A<1.35     (B)1.20<A<1.30     (C)1.295≤A<1.305  (D)1.300≤A<1.305

3.设a为实数,则|a+|a||运算的结果(  )

(A)可能是负数(B)不可能是负数(C)一定是负数(D)可能是正数。

4.已知|a|=8,|b|=2,|a-b|=b-a,则a+b的值是(  )(A)10(B)-6(C)-6或-10(D)-10

5.绝对值小于8的所有整数的和是(   )(A)0      (B)28      (C)-28      (D)以上都不是

6.由四舍五入法得到的近似数4.9万精确到(   )(A)万位     (B)千位    (C)十分位     (D)千分位

6.   计算下列各题:

(1)         32÷(-3)2+|-  |×(- 6)+;

(2)         {2(-)-× ÷}×(-6);

(3)-0.252÷(-)4+(1+2-3.75)×24;

(4){-3()2-22 ×0.125-(-1)3÷}÷{2×(-)2-1}。

(5){×(-2)2-()2+}÷| 21996·(-)1995| .

(6)           

(7)0.3-1-(- )-2+43-3-1+(π-3)0+tg2300

(8)()-1-(2001+ctg3000+(-2)··+

 

第3课       整式

〖知识点〗代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。

大纲要求

1、   了解代数式的概念,会列简单的代数式。理解代数式的值的概念,能正确地求出代数式的值;

2、   理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;

3、   掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;

4、   能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x2+(a+b)x+ab)进行运算;

5、   掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。

考查重点:

1.代数式的有关概念.

    (1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单               

独的一个数或者一个字母也是代数式.

    (2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.

    求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

(3)代数式的分类

2.整式的有关概念

    (1)单项式:只含有数与字母的积的代数式叫做单项式.

       对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

    (2)多项式:几个单项式的和,叫做多项式

对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析

(3)多项式的降幂排列与升幂排列

     把一个多项式按某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列

     把—个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列

       给出一个多项式,要会根据要求对它进行降幂排列或升幂排列.

    (4)同类项

所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.

      要会判断给出的项是否同类项,知道同类项可以合并.即 { 注意:其中                              

的X可以代表单项式中的字母部分,代表其他式子。}

3.整式的运算

    (1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一               般步骤是:

    (i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括

号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.

    (ii)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.

    (2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:

   

   * 多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.

   *多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.

   *遇到特殊形式的多项式乘法,还可以直接算:

   

  

 

 (3)整式的乘方

    单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。

    单项式的乘方要用到幂的乘方性质与积的乘方性质:

             

    多项式的乘方只涉及

考查重点与常见题型

1、   考查列代数式的能力。题型多为选择题,如:

下列各题中,所列代数式错误的是(  

(A)表示“比a与b的积的2倍小5的数”的代数式是2ab-5 (B)表示“被5除商是a,余数是2的数”的代数式是5a+2   (C)表示“a与b的平方差的倒数”的代数式是     (D)表示“数的一半与数的3倍的差”的代数式是-3b

2、   考查整数指数幂的运算、零指数。题型多为选择题,在实数运算中也有出现,如:

下列各式中,正确的是(  )(A)a3+a3=a6     (B)(3a3)2=6a6     (C)a3•a3=a6    (D)(a3)2=a6

整式的运算,题型多样,常见的填空、选择、化简等都有。考查题型:

1.下列各题中,所列代数式错误的是(  

(A)表示“比a与b的积的2倍小5的数”的代数式是2ab-5 (B)表示“被5除商是a,余数是2的数”的代数式是5a+2(C)表示“a与b的平方差的倒数”的代数式是   (D)表示“数的一半与数的3倍的差”的代数式是-3b

2.下列各式中,正确的是(  )(A)a3+a3=a6     (B)(3a3)2=6a6     (C)a3•a3=a6    (D)(a3)2=a6

3.用代数式表示:(1)a的绝对值的相反数与b的和的倒数;

               (2)x平方与y的和的平方减去x平方与y的立方的差;

4.-的系数是      ,是     次单项式;

5.多项式3x2-1-6x5-4x3      项式,其中最高次项是    ,常数项是   ,三次项系数是     ,按x的降幂排列                    

6.如果3m7xny+7和-4m2-4yn2x是同类项,则x=  ,y=  ;这两个单项式的积是__。

7.下列运算结果正确的是(    )①2x3-x2=x  ②x3•(x5)2=x13   ③(-x)6÷(-x)3=x3   ④(0.1)-2•10-1=10

(A)①②    (B)②④     (C)②③     (D)②③④

考查训练:

1、代数式a2-1,0,,x+,-,m,,–3b中单项式是   ,多项式是      ,分式是      

2、-是   次单项式,它的系数是        

3、多项式3yx2-1-6y2x5-4yx3   项式,其中最高次项是    ,常数项是    ,三次项系数是      ,按x的降幂排列为                   

4、已知梯形的上底为4a-3b,下底为2a+b,高为3a+b。试用含a,b的代数式表示出梯形的面积,并求出当a=5,b=3时梯形的面积。

5、下列计算中错误的是(  )(A)(-a3b)2·(-ab2)3=-a9b8    (B) (-a2b3)3÷(-ab2)3=a3b3

(C)(-a3)2·(-b2)3=a6b6      (D)[(-a3)2·(-b2)3]3=-a18b18

6、计算:3xy3·(-x34)÷(-x232

7.已知代数式3y2-2y+6的值为8,求代数式y2-y+1的值

8.设a-b=-2,求-ab的值。

7、利用公式计算:

(1)  (a2-b)( -b-a2          (2)   (a-)2 (a2+)2(a+)2

(3)(x+y-z)(x-y+z)-(x+y+z)(x-y-z)  (4)[(x2+6x+9) ÷(x+3)](x2-3x+9)

(5)(a2-4)(a2-2a+4)(a2+2a+4)           (6)101×99

 解题指导:       

1、代数式是(   )(A)整式      (B)分式        (C)单项式      (D)无理式

2、如果3x7-myn+3和-4x1-4my2n是同类项,那么m,n的值是(  

(A)m=-3,n=2     (B) m=2,n=-3    (C) m=-2,n=3    (D) m=3,n=-2

3、正确叙述代数式(2a-b2)的是(  )

(A)a与2的积减去b平方与3的商(B)a与2的积减去b的平方的差除以3

(C)a与2倍减去b平方的差的 (D)a的2倍减去b平方

4、用乘法公式计算:

(1)  (-2a-3b)2      (2) (a-3b+2c)2         (3) (2y-z)2[2y(z+2y)+z2]2

5、计算:

(1)(c-2b+3a)(2b+c-3a)             (2)(a-b)(a+b)2-2ab(a2-b2)

6、用竖式计算:  (5-4x3+5x2+2x4)÷(3+x2-2x)

7、已知6x3-9x2+mx+n能被6x2-x+4整除,求m,n的值,并写出被除式。

8、已知x+y=4,xy=3,求:3x2+3y2;(x-y)2

巩固提高

1、   若一个多项式加上2x2-x3-5-3x4得3x4-5x3-3,则这个多项式是     

2、   若3xn-(m-1)x+1为三次二项式,则m-n2的值为          

3、   用代数式表示,m,n两数的和除这两数的平方的差               

用语言叙述代数式                     

4.若除式=x+2,商式=2x+1,余式=-5,则被除式=          

5、当x=-2时,ax3+bx-7=5,则x=2时,ax3+bx-7=           

a-b=-2,a-c=-3,则(b-c)2-3(b-c)+1=    

6、如果(a+b-x)2的结果中不含的x一次项,那么a,b必满足( 

(A) a=b    (B)a=0,b=0    (C)a=-b       (D)以上都不对

7、-[a-(b-c)]去括号正确的是(  

(A) -a-b+c   (B)-a+b-c   (C)-a-b-c    (D)-a+b+c

8、设P是关于x的五次多项式,Q是关于x的三次多项式,则( 

(A)P+Q是关于的八次多项式     (B)P-Q是关于的二次多项式

(C)P·Q是关于的八次多项式    (D)是关于的二次多项式

9.下列计算中正确的是( 

(A)xn+2÷xn+1=x2                  (B)(xy)5÷xy3=(xy)2

(C)x10÷(x4÷x2)=x8               (D)(x4n÷x2n) ·x3n=x3n+2

10.若(am+1n+2)(a2n-12m)=a53,则m+n的值为(  )(A)1 (B)2 (C)3 (D)-3

11、计算:

(1)        (-2ax)2·(-x4y3z3) ÷(-a5xy2)    (2) (an+2+2an+1) ÷(-an-1)

(3) 5(m+n)(m-n)-2(m+n)2-3(m-n)2        (4)(a-b+c-d)(-a-b-c-d)

(5)(-x-y)2(x2-xy+y2)2                    (6)15+2a-{9a-[a-9-(3-6a)]}

(7)(a2c-bc2)-(a-b+c)(a+b-c)       *(8)(a-b)(a+b)2-(a+b)(a-b)2+2b(a2+b2)

0

阅读 评论 收藏 转载 喜欢 打印举报/Report
  • 评论加载中,请稍候...
发评论

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有