一、训练区的特征统计
【统计图】
http://s11/middle/6060744a49f0b8b895f2a&690
【16种地物的特征统计值】
ROI:
|
sandy desert
|
[Red]
|
9000
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
83.00
|
107.00
|
95.24
|
3.80
|
|
Band2
|
49.00
|
71.00
|
59.44
|
2.46
|
|
Band3
|
74.00
|
113.00
|
92.03
|
4.58
|
|
Band4
|
68.00
|
111.00
|
86.64
|
5.11
|
|
Band5
|
129.00
|
217.00
|
169.11
|
10.59
|
|
Band6
|
157.00
|
169.00
|
161.99
|
2.29
|
|
Band7
|
87.00
|
150.00
|
116.86
|
7.22
|
ROI:
|
paddy land
|
[Green]
|
5073.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
57.00
|
81.00
|
64.21
|
2.86
|
|
Band2
|
26.00
|
45.00
|
31.91
|
1.95
|
|
Band3
|
26.00
|
56.00
|
36.28
|
3.25
|
|
Band4
|
59.00
|
97.00
|
74.75
|
5.37
|
|
Band5
|
47.00
|
97.00
|
59.88
|
5.85
|
|
Band6
|
126.00
|
136.00
|
129.68
|
1.16
|
|
Band7
|
17.00
|
53.00
|
24.78
|
3.79
|
OI:
|
irrigated land
|
[Blue]
|
792.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
63.00
|
90.00
|
75.05
|
4.76
|
|
Band2
|
29.00
|
47.00
|
38.78
|
3.40
|
|
Band3
|
28.00
|
63.00
|
45.58
|
7.30
|
|
Band4
|
71.00
|
139.00
|
93.55
|
8.03
|
|
Band5
|
55.00
|
148.00
|
105.58
|
19.37
|
|
Band6
|
129.00
|
146.00
|
139.29
|
3.15
|
|
Band7
|
20.00
|
75.00
|
49.25
|
11.56
|
ROI:
|
garden
|
[Yellow]
|
150.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
68.00
|
88.00
|
72.99
|
2.76
|
|
Band2
|
32.00
|
45.00
|
35.79
|
1.61
|
|
Band3
|
34.00
|
57.00
|
39.94
|
3.00
|
|
Band4
|
71.00
|
85.00
|
78.61
|
2.65
|
|
Band5
|
74.00
|
97.00
|
82.89
|
4.24
|
|
Band6
|
134.00
|
143.00
|
138.13
|
1.98
|
|
Band7
|
30.00
|
55.00
|
39.67
|
4.04
|
ROI:
|
grassland
|
[Cyan]
|
67.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
80.00
|
99.00
|
89.46
|
4.74
|
|
Band2
|
47.00
|
59.00
|
53.24
|
3.10
|
|
Band3
|
64.00
|
86.00
|
74.75
|
5.01
|
|
Band4
|
81.00
|
98.00
|
88.43
|
4.14
|
|
Band5
|
125.00
|
158.00
|
140.52
|
8.34
|
|
Band6
|
151.00
|
161.00
|
157.21
|
2.06
|
|
Band7
|
75.00
|
101.00
|
87.66
|
6.38
|
ROI:
|
forest
|
[Magenta]
|
657.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
54.00
|
109.00
|
68.25
|
12.51
|
|
Band2
|
22.00
|
66.00
|
33.02
|
9.65
|
|
Band3
|
18.00
|
93.00
|
38.08
|
16.94
|
|
Band4
|
59.00
|
107.00
|
81.19
|
7.22
|
|
Band5
|
47.00
|
146.00
|
80.94
|
23.77
|
|
Band6
|
127.00
|
154.00
|
137.29
|
7.49
|
|
Band7
|
14.00
|
89.00
|
38.29
|
18.71
|
ROI:
|
young forest
|
[Sea
|
Green]
|
446.00
|
points
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
89.00
|
122.00
|
106.37
|
5.47
|
|
Band2
|
54.00
|
72.00
|
63.97
|
3.65
|
|
Band3
|
74.00
|
108.00
|
93.50
|
6.47
|
|
Band4
|
87.00
|
108.00
|
97.08
|
3.46
|
|
Band5
|
130.00
|
180.00
|
159.48
|
9.62
|
|
Band6
|
148.00
|
159.00
|
154.72
|
2.34
|
|
Band7
|
79.00
|
122.00
|
104.27
|
8.37
|
ROI:
|
gravel desert
|
[Purple]
|
1826.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
89.00
|
103.00
|
95.21
|
1.92
|
|
Band2
|
55.00
|
64.00
|
60.76
|
1.49
|
|
Band3
|
82.00
|
100.00
|
92.84
|
3.10
|
|
Band4
|
83.00
|
94.00
|
88.84
|
1.72
|
|
Band5
|
155.00
|
177.00
|
167.12
|
4.22
|
|
Band6
|
154.00
|
163.00
|
159.04
|
1.71
|
|
Band7
|
101.00
|
122.00
|
113.77
|
3.77
|
ROI:
|
barren land
|
[Coral]
|
196.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
108.00
|
162.00
|
134.32
|
12.01
|
|
Band2
|
64.00
|
90.00
|
75.61
|
5.64
|
|
Band3
|
87.00
|
120.00
|
103.50
|
6.66
|
|
Band4
|
80.00
|
115.00
|
98.34
|
6.82
|
|
Band5
|
120.00
|
182.00
|
154.81
|
12.20
|
|
Band6
|
135.00
|
157.00
|
145.03
|
6.48
|
|
Band7
|
60.00
|
126.00
|
98.10
|
13.20
|
ROI:
|
barren
|
[Aquamarine]
|
10220.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
59.00
|
121.00
|
87.90
|
9.15
|
|
Band2
|
23.00
|
73.00
|
46.12
|
8.02
|
|
Band3
|
23.00
|
107.00
|
60.36
|
13.97
|
|
Band4
|
20.00
|
107.00
|
59.87
|
14.90
|
|
Band5
|
27.00
|
188.00
|
101.63
|
28.98
|
|
Band6
|
129.00
|
166.00
|
147.10
|
7.73
|
|
Band7
|
17.00
|
126.00
|
64.52
|
19.52
|
ROI:
|
prevention desert
|
[Maroon]
|
2124.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
78.00
|
107.00
|
95.65
|
4.22
|
|
Band2
|
36.00
|
60.00
|
50.98
|
3.77
|
|
Band3
|
40.00
|
90.00
|
68.75
|
7.20
|
|
Band4
|
52.00
|
89.00
|
71.31
|
5.32
|
|
Band5
|
68.00
|
168.00
|
129.55
|
15.78
|
|
Band6
|
138.00
|
167.00
|
160.55
|
4.24
|
|
Band7
|
33.00
|
115.00
|
84.39
|
12.62
|
ROI:
|
reservoir or pond
|
[Orchid]
|
2231.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
54.00
|
111.00
|
66.45
|
6.34
|
|
Band2
|
20.00
|
53.00
|
30.63
|
4.62
|
|
Band3
|
17.00
|
67.00
|
29.21
|
7.65
|
|
Band4
|
10.00
|
85.00
|
29.44
|
15.72
|
|
Band5
|
2.00
|
102.00
|
25.62
|
18.75
|
|
Band6
|
119.00
|
158.00
|
126.50
|
4.63
|
|
Band7
|
0.00
|
65.00
|
13.61
|
9.99
|
ROI:
|
stream
|
[Sienna]
|
4371.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
62.00
|
105.00
|
81.12
|
8.46
|
|
Band2
|
29.00
|
56.00
|
42.63
|
3.44
|
|
Band3
|
34.00
|
76.00
|
56.31
|
3.59
|
|
Band4
|
29.00
|
75.00
|
38.65
|
3.47
|
|
Band5
|
6.00
|
106.00
|
15.36
|
6.60
|
|
Band6
|
113.00
|
143.00
|
119.96
|
2.68
|
|
Band7
|
2.00
|
70.00
|
8.38
|
3.73
|
ROI:
|
industrial area
|
[Red1]
|
996.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
62.00
|
152.00
|
93.07
|
12.14
|
|
Band2
|
23.00
|
77.00
|
44.58
|
6.87
|
|
Band3
|
22.00
|
100.00
|
54.35
|
10.00
|
|
Band4
|
17.00
|
92.00
|
52.05
|
10.11
|
|
Band5
|
18.00
|
189.00
|
74.10
|
17.80
|
|
Band6
|
134.00
|
159.00
|
148.73
|
4.43
|
|
Band7
|
11.00
|
255.00
|
48.62
|
15.66
|
ROI:
|
town or village
|
[Thistle]
|
397.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
76.00
|
123.00
|
94.13
|
5.79
|
|
Band2
|
38.00
|
68.00
|
52.05
|
3.93
|
|
Band3
|
42.00
|
93.00
|
71.28
|
6.50
|
|
Band4
|
62.00
|
92.00
|
78.48
|
3.87
|
|
Band5
|
81.00
|
145.00
|
116.94
|
8.91
|
|
Band6
|
138.00
|
147.00
|
142.46
|
1.59
|
|
Band7
|
49.00
|
99.00
|
73.98
|
7.61
|
ROI:
|
facility agriculture land
|
[Red2]
|
1624.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
68.00
|
115.00
|
91.02
|
6.19
|
|
Band2
|
32.00
|
59.00
|
49.38
|
3.78
|
|
Band3
|
36.00
|
85.00
|
67.37
|
5.73
|
|
Band4
|
51.00
|
84.00
|
68.11
|
5.32
|
|
Band5
|
67.00
|
134.00
|
109.06
|
8.92
|
|
Band6
|
135.00
|
151.00
|
142.58
|
3.13
|
|
Band7
|
33.00
|
89.00
|
69.58
|
7.49
|
ROI:
|
town
|
[Chartreuse]
|
276.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
72.00
|
133.00
|
92.11
|
8.06
|
|
Band2
|
32.00
|
71.00
|
45.35
|
5.37
|
|
Band3
|
35.00
|
94.00
|
56.61
|
8.27
|
|
Band4
|
36.00
|
90.00
|
54.17
|
7.87
|
|
Band5
|
41.00
|
113.00
|
76.75
|
11.24
|
|
Band6
|
137.00
|
149.00
|
143.63
|
2.51
|
|
Band7
|
23.00
|
77.00
|
49.65
|
7.86
|
ROI:
|
road or railway
|
[Red3]
|
1461.00
|
points
|
|
|
|
|
|
|
|
Basic
|
Stats
|
Min
|
Max
|
Mean
|
Stdev
|
|
Band1
|
55.00
|
119.00
|
92.36
|
9.49
|
|
Band2
|
24.00
|
67.00
|
47.97
|
6.08
|
|
Band3
|
20.00
|
91.00
|
61.13
|
10.20
|
|
Band4
|
15.00
|
99.00
|
67.56
|
8.49
|
|
Band5
|
42.00
|
164.00
|
94.30
|
17.19
|
|
Band6
|
129.00
|
169.00
|
143.99
|
8.57
|
|
Band7
|
21.00
|
110.00
|
58.13
|
13.64
|
【结果与分析】:16种地物中砾漠和水稻田的方差较小,裸岩和工业区的方差较大,这个原因和选取样本训练区时的目视解译有关系,裸岩选取的样本区过多,可能造成方差过大,除了盐碱地其余的地物在第五波段的方差都是最大的。道路在各波段反射率均较稳定,在热红外波段反射率较高,是由于道路的建筑材料以及频繁的车辆行驶,使得其有较高的温度,在热红外波段反射率高。沙漠和砾漠在可见光波段反射率较高,在近红外波段反射率达到高峰,它们具有相似的反射特征,沙漠在可见光近红外的反射率略高于砾漠。河流与坑塘有相同的反射率趋势,但是河流在可见光近红外波段的反射率略高于坑塘,是由于河流中还有较多的泥沙,反射率较大,就总体地物而言,水体的反射率最低。城镇及农村居民地以及工业地区反射率曲线相似,总体反射率比较高,可见光波段稳定,热红外波段反射率非常高,由于人类活动使城区及居民区有较高的温度。
二、统计样本可分性度量
1、Jeffries-Matusita
|
11
|
12
|
20
|
30
|
31
|
32
|
33
|
4
|
52
|
51
|
61
|
62
|
71
|
72
|
73
|
53
|
11
|
|
2.00
|
2.00
|
2.00
|
1.98
|
2.00
|
2.00
|
1.88
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
12
|
2.00
|
|
1.81
|
1.99
|
1.77
|
2.00
|
2.00
|
1.90
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
20
|
2.00
|
1.81
|
|
1.99
|
1.22
|
2.00
|
2.00
|
1.75
|
2.00
|
2.00
|
1.99
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
30
|
2.00
|
1.99
|
1.99
|
|
1.73
|
1.98
|
1.74
|
1.93
|
2.00
|
2.00
|
1.91
|
2.00
|
1.98
|
1.79
|
1.95
|
1.99
|
31
|
1.98
|
1.77
|
1.22
|
1.73
|
|
2.00
|
1.99
|
1.69
|
2.00
|
2.00
|
1.96
|
2.00
|
2.00
|
1.99
|
1.99
|
2.00
|
32
|
2.00
|
2.00
|
2.00
|
1.98
|
2.00
|
|
2.00
|
1.99
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
1.80
|
1.98
|
2.00
|
33
|
2.00
|
2.00
|
2.00
|
1.74
|
1.99
|
2.00
|
|
2.00
|
2.00
|
2.00
|
1.96
|
2.00
|
1.99
|
1.90
|
1.98
|
2.00
|
4
|
1.88
|
1.90
|
1.75
|
1.93
|
1.69
|
1.99
|
2.00
|
|
1.98
|
2.00
|
1.11
|
1.65
|
2.00
|
1.66
|
1.97
|
1.64
|
52
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
1.98
|
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
51
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
61
|
2.00
|
2.00
|
1.99
|
1.91
|
1.96
|
2.00
|
1.96
|
1.11
|
2.00
|
2.00
|
|
1.49
|
2.00
|
1.26
|
1.87
|
1.45
|
62
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
1.65
|
2.00
|
2.00
|
1.49
|
|
2.00
|
1.74
|
1.92
|
1.98
|
71
|
2.00
|
2.00
|
2.00
|
1.98
|
2.00
|
2.00
|
1.99
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
|
1.76
|
1.99
|
2.00
|
72
|
2.00
|
2.00
|
2.00
|
1.79
|
1.99
|
1.80
|
1.90
|
1.66
|
2.00
|
2.00
|
1.26
|
1.74
|
1.76
|
|
1.87
|
1.67
|
73
|
2.00
|
2.00
|
2.00
|
1.95
|
1.99
|
1.98
|
1.98
|
1.97
|
2.00
|
2.00
|
1.87
|
1.92
|
1.99
|
1.87
|
|
1.98
|
53
|
2.00
|
2.00
|
2.00
|
1.99
|
2.00
|
2.00
|
2.00
|
1.64
|
2.00
|
2.00
|
1.45
|
1.98
|
2.00
|
1.67
|
1.98
|
|
2、Transformed Divergence
|
11
|
12
|
20
|
30
|
31
|
32
|
33
|
4
|
52
|
51
|
61
|
62
|
71
|
72
|
73
|
53
|
11
|
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
12
|
2.00
|
|
1.97
|
2.00
|
1.99
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
20
|
2.00
|
1.97
|
|
2.00
|
1.74
|
2.00
|
2.00
|
1.98
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
30
|
2.00
|
2.00
|
2.00
|
|
1.99
|
2.00
|
1.96
|
2.00
|
2.00
|
2.00
|
1.98
|
2.00
|
2.00
|
1.99
|
2.00
|
2.00
|
31
|
2.00
|
1.99
|
1.74
|
1.99
|
|
2.00
|
2.00
|
1.98
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
32
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
1.99
|
2.00
|
2.00
|
33
|
2.00
|
2.00
|
2.00
|
1.96
|
2.00
|
2.00
|
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
4
|
2.00
|
2.00
|
1.98
|
2.00
|
1.98
|
2.00
|
2.00
|
|
2.00
|
2.00
|
1.54
|
1.84
|
2.00
|
1.97
|
2.00
|
1.96
|
52
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
51
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
61
|
2.00
|
2.00
|
2.00
|
1.98
|
2.00
|
2.00
|
2.00
|
1.54
|
2.00
|
2.00
|
|
1.72
|
2.00
|
1.51
|
1.98
|
1.65
|
62
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
1.84
|
2.00
|
2.00
|
1.72
|
|
2.00
|
1.95
|
1.99
|
2.00
|
71
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
|
2.00
|
2.00
|
2.00
|
72
|
2.00
|
2.00
|
2.00
|
1.99
|
2.00
|
1.99
|
2.00
|
1.97
|
2.00
|
2.00
|
1.51
|
1.95
|
2.00
|
|
2.00
|
1.90
|
73
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
1.98
|
1.99
|
2.00
|
2.00
|
|
2.00
|
53
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
2.00
|
1.96
|
2.00
|
2.00
|
1.65
|
2.00
|
2.00
|
1.90
|
2.00
|
|
【结果与分析】:由于多数值都集中在1.9左右,为了区分没有将其只保留两位小数。根据J—M距离的定义,其值大于1.9则两种地物具有很好的可分性,若介于1.5到1.8之间,则需要重采样来重新计算其值,而如果小于1就可将两种地物合并为同一种地物。由导出的结果可以看出,大多数地物经过目视解译和监督分类后都具有很好的可分性,其中沙漠除了和砾漠的可分性较低外,与其余地物的值都接近2,值低于1.8的多数都是裸岩和其余地物,这是由于在选取裸岩的训练区时样本区选的过多,而且较分散,造成其和其余地物的类中心距离较近,从而使得J—M距离过低;再低于1.8的多数集中在公路铁路和其余地物之间,在选取公路铁路训练区时,用的是线型Poyline,由于在影像上公路铁路信息不是很明显,所以在选取的时候造成很大的误差;还有林地的误差也较大,这也和目视解译、选取训练区有很大的关系。
三、最大似然法
http://s2/middle/6060744a49f0b912c08b1&690
【结果与分析】:经过最大似然法的监督分类后,主要地物可以被分类出来,而且经过编号调整颜色后可以较清楚的看出大概的分类结果和各种主要地物的分布情况,但由于算法本身存在问题和在选取训练区时的人为因素造成很严重椒盐现象。
四、监督分类精度评价
|
Overall Accuracy=(37631/41907)=89.80%
|
|
|
|
Kappa Coefficient=0.8825
|
|
|
|
Ground
|
Truth
|
(Pixels)
|
|
|
|
|
Class
|
sandy desert
|
paddy land
|
irrigated land
|
garden
|
grassland
|
|
Unclassified
|
0
|
0
|
4
|
0
|
0
|
|
71 sandy desert
|
8644
|
0
|
0
|
0
|
0
|
|
11 paddy land
|
0
|
4924
|
1
|
0
|
0
|
|
12 irrigated land
|
0
|
1
|
758
|
0
|
0
|
|
20 garden
|
0
|
0
|
5
|
147
|
0
|
|
30 grassland
|
0
|
0
|
0
|
0
|
65
|
|
31 forest
|
0
|
86
|
15
|
0
|
1
|
|
33 young forest
|
19
|
0
|
0
|
0
|
1
|
|
72 gravel desert
|
334
|
0
|
0
|
0
|
0
|
|
73 barren land
|
3
|
0
|
0
|
0
|
0
|
|
73 gravel
|
0
|
0
|
0
|
0
|
0
|
|
32 prevention desert
|
0
|
0
|
0
|
0
|
0
|
|
52 reservoir or pond
|
0
|
19
|
0
|
0
|
0
|
|
51 stream
|
0
|
0
|
0
|
0
|
0
|
|
62 industrial area
|
0
|
0
|
0
|
0
|
0
|
|
61 village
|
0
|
0
|
4
|
0
|
0
|
|
53 facility agriculture land
|
0
|
0
|
0
|
0
|
0
|
|
61 town
|
0
|
0
|
0
|
0
|
0
|
|
4 road or railway
|
0
|
43
|
5
|
3
|
0
|
|
Total
|
9000
|
5073
|
792
|
150
|
67
|
Ground
|
Truth
|
(Pixels)
|
|
|
|
|
Class
|
forest
|
young forest
|
gravel desert
|
barren land
|
gravel
|
|
Unclassified
|
0
|
0
|
0
|
1
|
2
|
|
71 sandy desert
|
0
|
0
|
45
|
0
|
1
|
|
11 paddy land
|
5
|
0
|
0
|
0
|
0
|
|
12 irrigated land
|
2
|
0
|
0
|
0
|
2
|
|
20 garden
|
3
|
0
|
0
|
0
|
0
|
|
30 grassland
|
9
|
11
|
0
|
0
|
31
|
|
31 forest
|
617
|
1
|
0
|
0
|
20
|
|
33 young forest
|
5
|
429
|
17
|
4
|
143
|
|
72 gravel desert
|
0
|
1
|
1764
|
0
|
6
|
|
73 barren land
|
0
|
1
|
0
|
191
|
107
|
|
73 gravel
|
0
|
3
|
0
|
0
|
8338
|
|
32 prevention desert
|
0
|
0
|
0
|
0
|
205
|
|
52 reservoir or pond
|
3
|
0
|
0
|
0
|
21
|
|
51 stream
|
0
|
0
|
0
|
0
|
0
|
|
62 industrial area
|
0
|
0
|
0
|
0
|
270
|
|
61 village
|
2
|
0
|
0
|
0
|
58
|
|
53 facility agriculture land
|
0
|
0
|
0
|
0
|
340
|
|
61 town
|
0
|
0
|
0
|
0
|
513
|
|
4 road or railway
|
11
|
0
|
0
|
0
|
163
|
|
Total
|
657
|
446
|
1826
|
196
|
10220
|
|
Ground
|
Truth
|
(Pixels)
|
|
|
|
|
Class
|
prevention desert
|
reservoir or pond
|
stream
|
industrial area
|
village
|
|
Unclassified
|
0
|
8
|
28
|
13
|
0
|
|
71 sandy desert
|
0
|
0
|
0
|
0
|
0
|
|
11 paddy land
|
0
|
4
|
0
|
0
|
0
|
|
12 irrigated land
|
0
|
0
|
0
|
0
|
4
|
|
20 garden
|
0
|
0
|
0
|
0
|
0
|
|
30 grassland
|
0
|
0
|
0
|
0
|
0
|
|
31 forest
|
0
|
0
|
0
|
8
|
8
|
|
33 young forest
|
2
|
0
|
0
|
0
|
0
|
|
72 gravel desert
|
1
|
0
|
0
|
0
|
0
|
|
73 barren land
|
0
|
0
|
0
|
1
|
1
|
|
73 gravel
|
15
|
11
|
0
|
40
|
2
|
|
32 prevention desert
|
1995
|
0
|
0
|
0
|
0
|
|
52 reservoir or pond
|
0
|
2099
|
3
|
0
|
0
|
|
51 stream
|
0
|
0
|
4319
|
0
|
0
|
|
62 industrial area
|
12
|
34
|
1
|
578
|
0
|
|
61 village
|
0
|
0
|
0
|
2
|
356
|
|
53 facility agriculture land
|
0
|
5
|
0
|
0
|
20
|
|
61 town
|
0
|
0
|
2
|
252
|
1
|
|
4 road or railway
|
99
|
70
|
18
|
102
|
5
|
|
Total
|
2124
|
2231
|
4371
|
996
|
397
|
|
Ground
|
Truth
|
(Pixels)
|
|
|
|
Class
|
facility agriculture land
|
town
|
road or railway
|
Total
|
|
Unclassified
|
0
|
0
|
0
|
56
|
|
71 sandy desert
|
0
|
0
|
2
|
8692
|
|
11 paddy land
|
0
|
0
|
23
|
4957
|
|
12 irrigated land
|
0
|
0
|
15
|
782
|
|
20 garden
|
2
|
0
|
13
|
170
|
|
30 grassland
|
0
|
0
|
0
|
116
|
|
31 forest
|
3
|
0
|
41
|
800
|
|
33 young forest
|
0
|
0
|
2
|
622
|
|
72 gravel desert
|
0
|
0
|
1
|
2107
|
|
73 barren land
|
0
|
0
|
1
|
305
|
|
73 gravel
|
34
|
8
|
95
|
8546
|
|
32 prevention desert
|
0
|
0
|
46
|
2246
|
|
52 reservoir or pond
|
0
|
2
|
29
|
2176
|
|
51 stream
|
0
|
0
|
0
|
4319
|
|
62 industrial area
|
5
|
16
|
33
|
949
|
|
61 village
|
137
|
0
|
74
|
633
|
|
53 facility agriculture land
|
1400
|
2
|
89
|
1856
|
|
61 town
|
5
|
236
|
226
|
1235
|
|
4 road or railway
|
38
|
12
|
771
|
1340
|
|
Total
|
1624
|
276
|
1461
|
41907
|
|
Ground
|
Truth
|
(Percent)
|
|
|
|
|
Class
|
sandy desert
|
paddy land
|
irrigated land
|
garden
|
grassland
|
|
Unclassified
|
0
|
0
|
0.51
|
0
|
0
|
|
71 sandy desert
|
96.04
|
0
|
0
|
0
|
0
|
|
11 paddy land
|
0
|
97.06
|
0.13
|
0
|
0
|
|
12 irrigated land
|
0
|
0.02
|
95.71
|
0
|
0
|
|
20 garden
|
0
|
0
|
0.63
|
98
|
0
|
|
30 grassland
|
0
|
0
|
0
|
0
|
97.01
|
|
31 forest
|
0
|
1.7
|
1.89
|
0
|
1.49
|
|
33 young forest
|
0.21
|
0
|
0
|
0
|
1.49
|
|
72 gravel desert
|
3.71
|
0
|
0
|
0
|
0
|
|
73 barren land
|
0.03
|
0
|
0
|
0
|
0
|
|
73 gravel
|
0
|
0
|
0
|
0
|
0
|
|
32 prevention desert
|
0
|
0
|
0
|
0
|
0
|
|
52 reservoir or pond
|
0
|
0.37
|
0
|
0
|
0
|
|
51 stream
|
0
|
0
|
0
|
0
|
0
|
|
62 industrial area
|
0
|
0
|
0
|
0
|
0
|
|
61 village
|
0
|
0
|
0.51
|
0
|
0
|
|
53 facility agriculture land
|
0
|
0
|
0
|
0
|
0
|
|
61 town
|
0
|
0
|
0
|
0
|
0
|
|
4 road or railway
|
0
|
0.85
|
0.63
|
2
|
0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
【结果与分析】:由错分、漏分数据可以得出和之前的可分性度量量一致,其中被错分、漏分的最多的是裸岩,其次是工业区、公路铁路,裸岩错分、漏分很大程度上是由于在选取训练区时样本区过多,且较分散,其余的地物是由于本身就存在不好分性,特别是工业区和城镇居民地,所以造成错漏分的像元很多。
五、制图精度和用户精度:
Class
|
Prod Acc.
|
User Acc.
|
Prod Acc.
|
User Acc.
|
|
(Percent)
|
(Percent)
|
(Pixels)
|
(Pixels)
|
71 sandy desert
|
96.04
|
99.45
|
8644/9000
|
8644/8692
|
11paddy land
|
97.06
|
99.33
|
4924/5073
|
4924/4957
|
12 irrigated land
|
95.71
|
96.93
|
758/792
|
758/782
|
20 garden
|
98
|
86.47
|
147/150
|
147/170
|
30 grassland
|
97.01
|
56.03
|
65/67
|
65/116
|
31 forest
|
93.91
|
77.13
|
617/657
|
617/800
|
33 young forest
|
96.19
|
68.97
|
429/446
|
429/622
|
72 gravel desert
|
96.6
|
83.72
|
1764/1826
|
1764/2107
|
73 barren land
|
97.45
|
62.62
|
191/196
|
191/305
|
73 barren
|
81.59
|
97.57
|
8338/10220
|
8338/8546
|
32 prevention desert
|
93.93
|
88.82
|
1995/2124
|
1995/2246
|
52 reservoir or pond
|
94.08
|
96.46
|
2099/2231
|
2099/2176
|
51 stream
|
98.81
|
100
|
4319/4371
|
4319/4319
|
62 industrial area
|
58.03
|
60.91
|
578/996
|
578/949
|
61 village
|
89.67
|
56.24
|
356/397
|
356/633
|
53 facility agriculture land
|
86.21
|
75.43
|
1400/1624
|
1400/1856
|
61 town
|
85.51
|
19.11
|
236/276
|
236/1235
|
4 road or railway
|
52.77
|
57.54
|
771/1461
|
771/1340
|
【结果与分析】:植被整体漏粉和错分现象比较少;道路,居民地,设施农用地好多漏分和错分现象,好多砾漠也被错分到居民地中。
六、主要/次要分析
http://s14/middle/6060744a49f0b95d29f6d&690
【结果与分析】:影像椒盐现象比较严重,所以需对监督分类后结果进行处理。上述两图采用的是主/次成分分析法。可以看出,进行主要分析后的影像效果较好,椒盐现象得到一定程度的避免;但是,利用次要分析处理后的影像,椒盐现象不但没有得到处理,而且进一步加重,各地物分类更加破碎,所以,在去除椒盐现象时,可以采用最大距离法。
七、类别集群:
http://s13/middle/6060744a49f0b9896c90c&690
【结果与分析】:经过类别集群处理后,地物侵蚀现象比较明显,尤其是沙漠地区,砾漠更多,防护林变的比较少。
八、类被筛选
http://s1/middle/6060744a49f0b9b1f6170&690
【结果与分析】:类别删选选的处理使得影像更为破碎,出现了更多的黑点,椒盐现象更明显。但是该功能便于处理孤岛问题。本功能选用了4领域和8领域值进行比较,可知随着参与运算的领域增加,影像变得比较平滑。
九、非监督分类:
http://s1/middle/6060744a49f0b9e807a80&690
【结果与分析】:非监督分类,根据地物不同的光谱特征,将其分成30类,然后对其进行识别分类,最终合成为9类。非监督分类并不能将地物明显区分,很多植被都被分在一;水库和坑塘也没有明确区分;沙漠和砾漠也是没有明显区别;并且城镇居民地和工厂也有很多的错分。
|