加载中…
个人资料
hytccs_861
hytccs_861
  • 博客等级:
  • 博客积分:0
  • 博客访问:6,322
  • 关注人气:2
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
相关博文
推荐博文
谁看过这篇博文
加载中…
正文 字体大小:

韩金风    210701004       第四页

(2008-12-12 12:19:26)
标签:

杂谈

Remember that in the world of Boolean algebra, there are only two possible values for any quantity and for any arithmetic operation: 1 or 0.
由于在布尔代数中,不管有多少数目多少算术操作,就只有0和1两种可能。
There is no such thing as "2" within the scope of Boolean values.
不可能出现像2这类的数。
Since the sum "1 + 1" certainly isn't 0, it must be 1 by process of elimination.
由于1+1当然不能等于0,通过排除它一定是1.
It does not matter how many or few terms we add together, either. Consider the following sums:
这和将再多项或再少项加在一起也是无关的。

韩金风 <wbr> <wbr> <wbr> <wbr>210701004 <wbr> <wbr> <wbr> <wbr> <wbr> <wbr> <wbr>第四页

Take a close look at the two-term sums in the first set of equations.
仔细观察第一个关于两项之和的方程式。
 Does that pattern look familiar to you? It should!
这个形式你熟悉吗?对!
It is the same pattern of 1's and 0's as seen in the truth table for an OR gate.
它和我们在或门形式中看到的1和0的真值表中的形式相同。
In other words, Boolean addition corresponds to the logical function of an "OR" gate, as well as to parallel switch contacts:
换句话说,布尔加法和逻辑函数的或门类似也和开关的接触相同。

 韩金风 <wbr> <wbr> <wbr> <wbr>210701004 <wbr> <wbr> <wbr> <wbr> <wbr> <wbr> <wbr>第四页

韩金风 <wbr> <wbr> <wbr> <wbr>210701004 <wbr> <wbr> <wbr> <wbr> <wbr> <wbr> <wbr>第四页

韩金风 <wbr> <wbr> <wbr> <wbr>210701004 <wbr> <wbr> <wbr> <wbr> <wbr> <wbr> <wbr>第四页

0

阅读 评论 收藏 转载 喜欢 打印举报/Report
  • 评论加载中,请稍候...
发评论

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有