加载中…
正文 字体大小:

稀土

(2011-10-31 20:50:16)
标签:

稀土

稀土元素

稀土分布

稀土金属

分类: 材料科学
       稀土元素(Rare Earth Element)最初是从瑞典产的比较稀少的矿物中发现的。“土”是按当时的习惯,称不溶于水的物质,故称稀土。以稀土元素为材料的叫做稀土材料
       稀土元素是周期表中IIIB族钪、钇和镧系元素之总称。其中钷是人造放射性元素。他们都是很活泼的金属,性质极为相似,常见化合价+3,其水合离子大多有颜色,易形成稳定的配化合物溶剂萃取离子交换是目前分离稀土的较好方法。镧、铈、镨、钕等轻稀土金属,由于熔点较低,在电解过程可呈熔融状态在阴极上析出,故一般均采用电解法制取。可用氯化物氟化物两种盐系,前者以稀土氯化物为原料加入电解槽,后者则以氧化物的形式加入。可见,有“工业维生素”之称的稀土,是17种特殊金属元素的统称。大到航空导弹、小到电脑芯片,都有广泛运用。
       稀土元素又称稀土金属稀土金属已广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。        
    
稀土


  稀土元素的共性是:

           ① 它们的原子结构相似;
           ② 离子半径相近(REE3+离子半径1.06×10^-10m~0.84×10^-10m,Y3+为0.89×10^-10m);
           ③ 它们在自然界密切共生。
       稀土元素有多种分组方法,目前最常用的有两种:
       两分法:铈族稀土,La-Eu,亦称轻稀土(LREE)
          钇族稀土,Gd-Lu+Y,亦称重稀土(HREE)
       两分法分组以Gd划界的原因是:从Gd开始在4f亚层上新增加电子的自旋方向改变了。而Y归入重稀土组主要是由于Y3+离子半径与重稀土相近,化学性质与重稀土相似,它们在自然界密切共生。
       也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。
  三分法:轻稀土为La~Nd;中稀土为Sm~Ho;中稀土为Er~Lu+Y。

       稀土[xītǔ]一词是历史遗留下来名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为稀土铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为稀土钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。

       稀土就是化学元素周期表中的镧系元素:                                                                                                                     (La)、(Ce)、(Pr)、(Nd)、(Pm)、(Sm)、(Eu)、(Gd)、(Tb)、(Dy)、(Ho)、
(Er)、(Tm)、(Yb)、(Lu),以及与镧系的15个元素密切相关的两个元素——(Sc)和(Y)共17种元素,称为稀土元素。
  周期系ⅢB族中原子序数为21、39和57~71的17种化学元素的统称。其中原子序数为57~71的15种化学元素又统称为镧系元素


    稀土的分组
 
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。
轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆。
重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。
称铈组或钇组,是因为矿物经分离得到的稀土混合物中,常以铈或钇占优势而得名。

 
    稀土元素的主要物理化学性质
 
稀土元素是典型的金属元素。它们的金属活泼性仅次于碱金属和碱土金属元素,而比其他金属元素活泼。在17个稀土元素当中,按金属的活泼次序排列,由钪,钇、镧递增,由镧到镥递减,即镧元素最活泼。稀土元素能形成化学稳定的氧化物、卤化物、硫化物。稀土元素可以和氮、氢、碳、磷发生反应,易溶于盐酸、硫酸和硝酸中。
稀土易和氧、硫、铅等元素化合生成熔点高的化合物,因此在钢水中加入稀土,可以起到净化钢的效果。由于稀土元素的金属原子半径比铁的原子半径大,很容易填补在其晶粒及缺陷中,并生成能阻碍晶粒继续生长的膜,从而使晶粒细化而提高钢的性能。
稀土元素具有未充满的4f电子层结构,并由此而产生多种多样的电子能级。因此,稀土可以作为优良的荧光,激光和电光源材料以及彩色玻璃、陶瓷的釉料。
稀土离子与羟基、偶氮基或磺酸基等形成结合物,使稀土广泛用于印染行业。而某些稀土元素具有中子俘获截面积大的特性,如钐、铕、钆、镝和铒,可用作原子能反应堆的控制材料和减速剂。而铈、钇的中子俘获截面积小,则可作为反应堆燃料的稀释剂。
稀土具有类似微量元素的性质,可以促进农作物的种子萌发,促进根系生长,促进植物的光合作用。


    稀土金属的某些物理特性

原子序数
元素
离子半
径(埃)
密度
(克/厘3)
熔度
(℃)
沸点
(℃)
氧化物
熔点(℃)
电阻欧姆· 厘米×106
R3+离子磁矩
(波尔磁子)
热中子俘获
截面(靶)
57
138.92
1.22
6.19
920±5
4230
2315
56.8
0.00
8.9
58
Ce
140.13
1.18
6.768
804±5
2930
1950
75.3
2.56
0.7
59
140.92
1.16
6.769
935±5
3020
2500
68.0
3.62
11.2
60
144.27
1.15
7.007
1024±5
3180
2270
64.3
3.68
46
61
Pm
147.00
1.14
2.83
62
150.35
1.13
7.504
1052±5
1630
2350
88.0
1.55~1.65
5500
63
Eu
152.00
1.13
5.166
826±10
1490
2050
81.3
3.40~3.50
4600
64
Gd
157.26
1.11
7.868
1350±20
2730
2350
140.5
7.94
46000
65
Tb
158.93
1.09
8.253
1336
2530
2387
9.7
44
66
Dy
162.51
1.07
8.565
1485±20
2330
2340
56.0
10.6
1100
67
Ho
164.94
1.05
8.799
1490
2330
2360
87.0
10.6
64
68
Er
167.27
1.04
9.058
1500~1550
2630
2355
107.0
9.6
166
69
Tm
168.94
1.04
9.318
1500~1600
2130
2400
79.0
7.6
118
70
Yb
173.04
1.00
6.959
824±5
1530
2346
27.0
4.5
36
71
Lu
174.99
0.99
9.849
1650~1750
1930
2400
79.0
0.00
108
21
Sc
44.97
0.83
2.995
1550~1600
2750
13
39
Y
88.92
1.06
4.472
1552
3030
2680
1.27
 


    17种稀土元素名称的由来及用途:

稀土

 
     镧(La)

“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。从此,镧便登上了历史舞台。
镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。
 
     铈(Ce)

“铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星——谷神星。
铈广泛应用于(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约一千多吨。(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。
 
     镨(Pr)
 
 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为“镨钕”。“镨钕”希腊语为“双生子”之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从“镨钕”中分离出了两个元素,一个取名为“钕”,另一个则命名为“镨”。这种“双生子”被分隔开了,镨元素也有了自己施展才华的广阔天地。
镨是用量较大的稀土元素,其主要用于玻璃、陶瓷和磁性材料中。(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。(2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。(3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。(4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。
 
     钕(Nd)
 
 伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。
 钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代“永磁之王”,以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。
 
     钷(Pm)
 
 1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。
钷为核反应堆生产的人造放射性元素。钷的主要用途有(1)可作热源。为真空探测和人造卫星提供辅助能量。(2)Pm147放出能量低的β射线,用于制造钷电池。作为导弹制导仪器及钟表的电源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线仪、制备荧光粉、度量厚度以及航标灯中。
 
     钐(Sm)
 
 1879年,波依斯包德莱从铌钇矿得到的“镨钕”中发现了新的稀土元素,并根据这种矿石的名称命名为钐。
 钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。
 
     铕(Eu)
 
 1901年,德马凯(Eugene-Antole Demarcay)从“钐”中发现了新元素,取名为铕(Europium)。这大概是根据欧洲(EuroPE)一词命名的。氧化铕大部分用于荧光粉。Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。
 
     钆(Gd)
 
 1880年,瑞士的马里格纳克(G.de MarignAC)将“钐”分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者 研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。
 钆在现代技革新中将起重要作用。它的主要用途有:(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。(4)在无Camot循环限制时,可用作固态磁致冷介质。(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。氧化钆还可用于制造电容器、x射线增感屏。
 在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。
 
     铽(Tb)
 
 1843年瑞典的莫桑德(Karl G.Mosander)通过对钇土的研究,发现铽元素(Terbium)。铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显著经济效益的项目,有着诱人的发展前景。主要应用领域有:(1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大,这种变化可以使一些精密机械运动得以实现。铽镝铁开始主要用于声纳,目前已广泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、太空望远镜的调节机构和飞机机翼调节器等领域。
 
     镝(Dy)
 
 1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中“难以得到”的意思取名为镝(dysprosium)。镝目前在许多高技术领域起着越来越重要的作用,镝的最主要用途是(1)作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2~3%左右的镝,可提高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。(2)镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发射,掺镝的发光材料可作为三基色荧光粉。(3)镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使一些机械运动的精密活动得以实现。(4)镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。(5)用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。(6)由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能谱或做中子吸收剂。(7)Dy3Al5O12还可用作磁致冷用磁性工作物质。随着科学技术的发展,镝的应用领域将会不断的拓展和延伸。
 
     钬(Ho)
 
 十九世纪后半叶,由于光谱分析法的发现和元素周期表的发表,再加上稀土元素电化学分离工艺的进展,更加促进了新的稀土元素的发现。1879年,瑞典人克利夫发现了钬元素并以瑞典首都斯德哥尔摩地名命名为钬(holmium)。
 钬的应用领域目前还有待于进一步开发,用量不是很大,最近,包钢稀土研究院采用高温高真空蒸馏提纯技术,研制出非稀土杂质含量很低的高纯金属钬Ho/ΣRE>99.9%。目前钬的主要用途有:用作金属卤素灯添加剂,金属卤素灯是一种气体放电灯,它是在高压汞灯基础上发展起来的,其特点是在灯泡里充有各种不同的稀土卤化物。目前主要使用的是稀土碘化物,在气体放电时发出不同的谱线光色。在钬灯中采用的工作物质是碘化钬,在电弧区可以获得较高的金属原子浓度,从而大大提高了辐射效能。(2)钬可以用作钇铁或钇铝石榴石的添加剂;(3)掺钬的钇铝石榴石(Ho:YAG)可发射2μm激光,人体组织对2μm激光吸收率高,几乎比Hd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光束可消除脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据报道美国用钬激光治疗青光眼,可以减少患者手术的痛苦。我国2μm激光晶体的水平已达到国际水平,应大力开发生产这种激光晶体。(4)在磁致伸缩合金Terfenol-D中,也可以加入少量的钬,从而降低合金饱和磁化所需的外场。(5)另外用掺钬的光纤可以制作光纤激光器、光纤放大器、光纤传感器等等光通讯器件在光纤通信迅猛的今天将发挥更重要的作用。
 
     铒(Er)
 
 1843年,瑞典的莫桑德发现了铒元素(Erbium)。铒的光学性质非常突出,一直是人们关注的问题:(1)Er3+在1550nm处的光发射具有特殊意义,因为该波长正好位于光纤通讯的光学纤维的最低损失,铒离子(Er3+)受到波长980nm、1480nm的光激发后,从基态4I15/2跃迁至高能态4I13/2,当处于高能态的Er3+再跃迁回至基态时发射出1550nm波长的光,石英光纤可传送各种不同波长的光,但不同的光光衰率不同,1550nm频带的光在石英光纤中传输时光衰减率最低(0.15分贝/公里),几乎为下限极限衰减率。因此,光纤通信在1550nm处作信号光时,光损失最小。这样,如果把适当浓度的铒掺入合适的基质中,可依据激光原理作用,放大器能够补偿通讯系统中的损耗,因此在需要放大波长1550nm光信号的电讯网络中,掺铒光纤放大器是必不可少的光学器件,目前掺铒的二氧化硅纤维放大器已实现商业化。据报道,为避免无用的吸收,光纤中铒的掺杂量几十至几百PPm。光纤通信的迅猛发展,将开辟铒的应用新领域。(2)另外掺铒的激光晶体及其输出的1730nm激光和1550nm激光对人的眼睛安全,大气传输性能较好,对战场的硝烟穿透能力较强,保密性好,不易被敌人探测,照射军事目标的对比度较大,已制成军事上用的对人眼安全的便携式激光测距仪。(3)Er3+加入到玻璃中可制成稀土玻璃激光材料,是目前输出脉冲能量最大,输出功率最高的固体激光材料。(4)Er3+还可做稀土上转换激光材料的激活离子。(5)另外铒也可应用于眼镜片玻璃、结晶玻璃的脱色和着色等。
 
     铥(Tm)
 
 铥元素是1879年瑞典的克利夫发现的,并以斯堪迪那维亚(Scandinavia)的旧名Thule命名为铥(Thulium)。
 铥的主要用途有以下几个方面:(1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。(2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。(3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。(4)铥还可在新型照明光源 金属卤素灯做添加剂。(5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。
 
     镱(Yb)
 
 1878年,查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在“铒”中发现了新的稀土元素,这个元素由伊特必(Ytterby)命名为镱(Ytterbium)。
镱的主要用途有(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。
 
     镥(Lu)
 
 1907年,韦尔斯巴赫和尤贝恩(G.Urbain)各自进行研究,用不同的分离方法从“镱”中又发现了一个新元素,韦尔斯巴赫把这个元素取名为Cp(CASSiopeium),尤贝恩根据巴黎的旧名lutece将其命名为Lu(Lutetium)。后来发现Cp和Lu是同一元素,便统一称为镥。
镥的主要用途有(1)制造某些特殊合金。例如镥铝合金可用于中子活化分析。(2)稳定的镥核素在石油裂化、烷基化、氢化和聚合反应中起催化作用。(3)钇铁或钇铝石榴石的添加元素,改善某些性能。(4)磁泡贮存器的原料。(5)一种复合功能晶体掺镥四硼酸铝钇钕,属于盐溶液冷却生长晶体的技术领域,实验证明,掺镥NYAB晶体在光学均匀性和激光性能方面均优于NYAB晶体。(6)经国外有关部门研究发现,镥在电致变色显示和低维分子半导体中具有潜在的用途。此外,镥还用于能源电池技术以及荧光粉的激活剂等。
 
     钇(Y)
 
 1788年,一位以研究化学和矿物学、收集矿石的业余爱好者瑞典军官卡尔·阿雷尼乌斯(Karl Arrhenius)在斯德哥尔摩湾外的伊特必村(Ytterby),发现了外观象沥青和煤一样的黑色矿物,按当地的地名命名为伊特必矿(YtterbITe)。1794年芬兰化学家约翰·加多林分析了这种伊特必矿样品。发现其中除铍、硅、铁的氧化物外,还含有约38%的未知元素的氧化物棗“新土”。1797年,瑞典化学家埃克贝格(Anders GusTaf Ekeberg)确认了这种“新土”,命名为钇土(Yttria,钇的氧化物之意)。
 钇是一种用途广泛的金属,主要用途有:(1)钢铁及有色合金的添加剂。FeCR合金通常含0.5-4%钇,钇能够增强这些不锈钢的抗氧化性和延展性;MB26合金中添加适量的富钇混合稀土后,合金的综合性能得到明显的改善,可以替代部分中强铝合金用于飞机的受力构件上;在Al-Zr合金中加入少量富钇稀土,可提高合金导电率;该合金已为国内大多数电线厂采用;在铜合金中加入钇,提高了导电性和机械强度。(2)含钇6%和铝2%的氮化硅陶瓷材料,可用来研制发动机部件。(3)用功率400瓦的钕钇铝石榴石激光束来对大型构件进行钻孔、切削和焊接等机械加工。(4)由Y-Al石榴石单晶片构成的电子显微镜荧光屏,荧光亮度高,对散射光的吸收低,抗高温和抗机械磨损性能好。(5)含钇达90%的高钇结构合金,可以应用于航空和其它要求低密度和高熔点的场合。(6)目前倍受人们关注的掺钇SrZrO3高温质子传导材料,对燃料电池、电解池和要求氢溶解度高的气敏元件的生产具有重要的意义。此外,钇还用于耐高温喷涂材料、原子能反应堆燃料的稀释剂、永磁材料添加剂以及电子工业中作吸气剂等。
 
     钪(Sc)
 
 1879年,瑞典的化学教授尼尔森(L.F.Nilson, 1840~1899)和克莱夫(P.T.Cleve, 1840~1905)差不多同时在稀有的矿物硅铍钇矿和黑稀金矿中找到了一种新元素。他们给这一元素定名为“Scandium”(钪),钪就是门捷列夫当初所预言的“类硼”元素。他们的发现再次证明了元素周期律的正确性和门捷列夫的远见卓识。
 钪比起钇和镧系元素来,由于离子半径特别小,氢氧化物的碱性也特别弱,因此,钪和稀土元素混在一起时,用氨(或极稀的碱)处理,钪将首先析出,故应用“分级沉淀”法可比较容易地把它从稀土元素中分离出来。另一种方法是利用硝酸盐的分极分解进行分离,由于硝酸钪最容易分解,从而达到分离的目的。
 用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LICl共熔,以熔融的锌为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。另外,在加工矿石生产铀、钍和镧系元素时易回收钪。钨、锡矿中综合回收伴生的钪也是钪的重要来源之一。
 钪在化合物中主要呈3价态,在空气中容易氧化成Sc2O3而失去金属光泽变成暗灰色。
 钪能与热水作用放出氢,也易溶于酸,是一种强还原剂。
 钪的氧化物及氢氧化物只显碱性,但其盐灰几乎不能水解。钪的氯化物为白色结晶,易溶于水并能在空气中潮解。
 在冶金工业中,钪常用于制造合金(合金的添加剂),以改善合金的强度、硬度和耐热和性能。如,在铁水中加入少量的钪,可显著改善铸铁的性能,少量的钪加入铝中,可改善其强度和耐热性。
 在电子工业中,钪可用作各种半导体器件,如钪的亚硫酸盐在半导体中的应用已引起了国内外的注意,含钪的铁氧体在计算机磁芯中也颇有前途。
 在化学工业上,用钪化合物作酒精脱氢及脱水剂,生产乙烯和用废盐酸生产氯时的高效催化剂。
 在玻璃工业中,可以制造含钪的特种玻璃。
 在电光源工业中,含钪和钠制成的钪钠灯,具有效率高和光色正的优点。
 自然界中钪均以45Sc形式存在,另外,钪还有9种放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作为示踪剂,已在化工、冶金及海洋学等方面使用。在医学上,国外还有人研究用46Sc来医治癌症。钪的性质及用途。
 


    稀土矿物

   在自然界中主要矿物有独居石、铈硅石、铈铝石、黑稀金矿和磷酸钇矿。因其天然丰度小,又以氧化物或含氧酸盐矿物共生形式存在,故得名。 
   已经发现的稀土矿物有250种以上,最重要的有氟碳铈镧矿[(Ce,La)FCO3]、独居石[CePO4,Th3(PO4)4]、磷钇石(YPO4)、黑稀金矿[(Y,Ce,Ca) (Nb,Ta,Ti)2O6]、硅铍钇矿(Y2FeBe2Si2O10)、褐帘石[(Ca,Ce)2(Al,Fe)3Si3O12]、铈硅石[(Ce,Y,Pr)2Si2O7·H2O]。
   现已查明,稀土元素并不稀少,特别是中国稀土资源十分丰富,有开采价值的储量占世界第一位。从1794年芬兰J加多林从瑞典斯德哥尔摩附近的于特比镇发现钇开始,一直到1947年美国JA马林斯基从裂变产物中分离出钷,共经历150多年。

稀土

     

    中国稀土矿产分布:


  中国稀土产业在世界上占有资源储量、稀土产量、稀土销售量和稀土用量四个第一。中国已经成为世界上唯一的可以大量供应不同品种及不同品级稀土产品的国家。中国稀土资源丰富,绝对量很大,但含量偏低,且分布不均匀,可供开采且具有工业利用价值的有轻稀土矿物,主要是氟碳铈矿、独居石、铈铌钙钛矿;重稀土矿物,主要是磷钇矿、褐钇铌矿、离子吸附型稀土矿、钛铀矿等十几种。

  20世纪50年代初期,中国发现并探明白云鄂博铁铌稀土矿床,60年代发现广东、江西等地的离子吸附型稀土矿床,70年代发现山东微山稀土矿床,80年代发现四川“牦牛坪式”稀土矿床。据统计,上世纪80年代初期中国稀土储量占世界稀土总储量的70%以上;但是随着中国稀土资源的开采和消耗、国外稀土矿产地的不断发现,目前中国的稀土储量占世界稀土储量的百分比已经下降到30%左右。

  目前,已在中国三分之二以上的省(区)发现上千处矿床、矿点和矿化产地。但集中分布在内蒙古的白云鄂博、江西赣南、广东粤北、四川凉山和山东微山等地,形成北、南、西、东的分布格局,并且有北轻南重的分布特点。中国稀土矿主要有白云鄂博矿,四川冕宁矿,山东微山矿,江南七省的离子吸附型稀土矿,广东、广西、江西的磷钇矿,湖南、广东、广西、海南、台湾的独居石矿,贵州含稀土的磷矿,长江重庆段淤砂中的钪矿,以及漫长海岸线上的海滨砂矿等。

  内蒙古白云鄂博稀土矿

  白云鄂博矿是稀土与铁、铌、钍等元素共生的综合矿床,稀土矿主要分布在该矿的主、东、西三个铁矿体中,东部接触带和主、东矿体下盘的稀土白云岩中,主、东矿稀土矿化强烈、萤石化白云岩稀土含量最高,铁矿化白云岩次之,稀土含量向深部有增高趋势。其它矿区,如主、东矿上下盘白云岩、西矿区、东介勒格勒和都拉哈拉矿区虽远景储量较大,自东向西品位有下降趋势,目前尚不能作为稀土矿加以利用。包头稀土矿将由白云鄂博矿山逐渐转移到包钢选矿厂尾矿坝,尾矿坝将成为稀土矿的贮存地。所以保护好尾矿坝的稀土资源至关重要,确保中国稀土工业可持续发展,保证2020年以后的若干年内,使中国稀土储量仍然保持世界储量第一位的优势。包头市目前共有三家稀土选矿厂,年选稀土精矿能力为10万t(以REO计),产品为氟碳铈—独居石混合精矿,品位(REO)为:3415%、45%、50%、60%等类型,根据市场需求生产。包头稀土矿产品产量占全国稀土矿产品产量约54%,但稀土选矿厂仍不能满负荷生产。进入选矿厂的氧化铁矿石含稀土6%左右,选铁后稀土品位上升到9%~12%,经选稀土后的最终尾矿稀土品位仍为5%左右,与未选别稀土的磁铁矿选铁尾矿混合(约90%的稀土)排入尾矿坝,约1%的稀土(REO)进入铁精矿(含ThO201008%~0101%),经高炉冶炼到高炉渣中送渣堆存。

  四川凉山稀土矿

  四川自1960年在冕宁三岔河发现稀土矿后,于1986年开始对稀土矿进行普查和详查。至今已初步查明四川省稀土矿29处,分属9种成因类型。稀土矿产资源集中于攀西地区,大多分布于凉山彝族自治州的冕宁、西昌、德昌等县市,构成了一个南北长约300公里的稀土资源集中区,集中分布在冕宁县的牦牛坪和德昌县的大陆槽。牦牛坪稀土矿床规模居各矿床之首,矿床的工业矿物绝大部分为氟碳铈矿,其次为氟碳钙铈矿,少量硅钛铈矿等,矿石中80%REO集中在氟碳铈矿内。该稀土矿中镧、铈、镨、钕轻稀土占98%以上,中重稀土配分仅为1%~2%,是典型的氟碳铈矿。其中铕、钇较国外同类矿床含量高,并且稀土矿物单一,矿石易选易炼。四川稀土开发利用始于1989年,109地质队与冕宁县合作,对牦牛坪稀土矿试探性的开采。经过近20多年的发展,产量迅速上升,已具有一定规模。今后四川稀土采矿应该在合理有序的条件下开采。现在凉山州冕宁县政府已引进江西铜业集团对牦牛坪稀土矿山采矿、选矿进行整合,整合后会达到科学有序规模开采。

  山东微山稀土矿

  微山稀土矿位于山东省微山县塘湖乡境内,1958年~1962年先后由原济南地质局和802队放射性航测时发现,平均地质品位3113%,属石英-重晶石-碳酸盐稀土矿床,矿物及脉石成分简单,以氟碳铈矿及氟碳钙铈矿为主,伴生有重晶石、方解石、石英、萤石等,稀土矿物嵌布粒度较粗,一般在015mm~0104mm,属易磨易选矿石。微山稀土选矿厂正式建厂于1982年,规模小。1991年至2001年,生产REO为45%~50%的稀土精矿。由于采矿转入井下开采,原矿稀土品位降低以及其他原因,2002年以后稀土精矿生产量锐减,市场份额极低。

  南方七省稀土矿

  20世纪60年代末期,中国风化壳淋积型稀土矿被发现,首先在江西省龙南足洞发现离子吸附重稀土矿及寻乌河岭离子吸附稀土矿后,相继在福建、湖南、广东、广西等南岭地区均有发现,但以江西比较集中量大。风化壳淋积型稀土矿-离子吸附型稀土矿是一种国外未见报导过的中国独特的新型稀土矿床。经20多年的研究,查明该类型矿具有分布地面广,储量大,放射性低,开采容易,提取稀土工艺简单,生产成本低,产品质量好等特点。风化淋积型稀土矿系含稀土花岗岩或火山岩经多年风化而形成,矿体覆盖浅,矿石较松散,颗粒很细。在矿石中的稀土元素80%~90%呈离子状态吸附在高岭土、埃洛石和水云母等粘土矿物上;吸附在粘土矿物上的稀土阳离子不溶于水或乙醇,但在强电解质(如NaCl,(NH4)2SO4,NH4Cl,NH4Ac等)溶液中能发生离子交换并进入溶液和具有可逆反应。风化壳淋积型稀土矿开采和利用始于1970年,1970年至1999年风化壳淋积型稀土矿基本采用池浸生产技术生产,池浸生产资源利用率按26%计,2000年至2003年池浸和原地浸矿生产各占50%,原地浸矿生产资源利用率70%。2004年至2008年全部生产采用原地浸矿技术累计生产,资源利用率75%。


稀土

稀土


稀土


         国外稀土矿产分布

 稀土在地壳中的丰度为200×10-6,高于金、铂、钨、钼、钴、铅、锌等元素的丰度,其实并不算是很稀少的资源。包括17种元素:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钇(Y)、钪(Sc)。

 稀土元素因其电子结构和化学性质相近而共生,由于4f层电子数的不同,每个稀土元素又具有特殊的个性,同一结构或体系的稀土材料可具有两种或两种以上的物理和化学特性,随着稀土元素特殊性质的不断认识和发现,每隔3~5年,就会找到稀土的一种新用途,特别是它们的光学、磁学性质已广泛地应用在当今新材料、新技术领域,目前含有稀土的功能材料已达50多类。

 目前开发利用的稀土矿物主要有五种:氟碳铈矿、离子吸附型稀土矿、独居石矿、磷钇矿和磷灰石矿,前四种矿占世界稀土产量的95%以上。氟碳铈矿与独居石轻稀土含量高,磷钇矿含重稀土,但储量低,离子吸附型稀土矿重稀土含量高,磷灰石主要是轻稀土。

 世界稀土资源世界稀土资源主要集中在中国、澳大利亚、俄罗斯、美国、巴西、加拿大,此外印度等国稀土资源也较为丰富,近年来在越南、南非、马来西亚、印度尼西亚、斯里兰卡、蒙古、朝鲜、阿富汗、沙特阿拉伯、土耳其、挪威、格陵兰、尼日利亚、坦桑尼亚、布隆迪、马达加斯加、莫桑比克和埃及等国家和地区也发现了大型稀土矿床。

 2007年,中国稀土矿产品产量为12.08万吨,约占全球稀土矿产品产量的97%;稀土产品出口量为4.9万吨,约占世界稀土产品贸易量的90%以上。根据美国联邦地质调查局的公开资料,截至2008年底,世界稀土金属储量8800万吨(以稀土氧化物-REO计,下同),其中,中国2700万吨,俄罗斯1900万吨,美国1300万吨,澳大利亚520万吨,印度110万吨,其它国家合计2200万吨。

 国外主要的稀土矿山有美国的芒廷帕司稀土矿和贝诺杰稀土矿、加拿大的托尔湖和霍益达斯湖稀土矿、澳大利亚的韦尔德山稀土矿和诺兰稀土矿等,各公司的总体概况见下表。 

世界稀土资源 - 王思德 - 海外资源文库

 

 美国芒廷帕司稀土矿

 芒廷帕司(Mountain Pass)稀土矿位于美国加利福尼亚州西南莫哈韦沙漠边缘,1949年两名找矿人将当地矿石当作铀矿样品送往美国地质调查局检测时偶然发现,随后开展大规模的地质调查和勘探,逐渐探明这一世界级的轻稀土矿床。该稀土矿床赋存在碳酸岩侵入杂岩中,矿石主要由碳酸盐矿物(方解石、白云石、磷铁矿、铁白云石)、硫酸盐矿物(重晶石、天青石)、氟碳铈矿和硅酸盐矿物(石英)组成,含稀土矿物主要为氟碳铈矿。矿山目前保有矿石储量5000万吨,稀土氧化物平均品位8%~9%,含稀土氧化物430万吨。芒廷帕司稀土矿于1952年矿山投产,在20世纪60~80年代中期,该矿山是世界稀土市场的主要供应商,1990年其稀土产品占当时全球市场的40%,后来随着中国稀土矿山大量开发而逐渐减少供应,至2002年完成最后一次采矿活动后停止开采,但一直销售库存的氟碳铈精矿和轻稀土氧化物。矿山还建有配套的稀土选矿和分离工厂,年生产能力为20000吨稀土氧化物。分离厂于1998年由于废水处理设施不达标而停产,但2007年第四季度稀土分离厂又已经重启,2009年重新选择矿厂,处理封存的氟碳铈矿精矿。芒廷帕司矿山曾几易其主,目前矿山的拥有者为莫里珂普矿物公司。

 美国贝诺杰稀土矿

 贝诺杰(Bear Lodge)稀土矿山位于美国怀俄明州东北部西北走向的贝诺杰山的中北段。贝诺杰山位于近南北向的东落基山脉碱性火山岩带上,是美国重要的黄金产区,在20世纪初期曾被当作金矿勘查的潜力区域。该区稀土矿床于1949年发现,随后美国地质调查局于1953年报道了这一发现。1972年,第瓦尔公司(Duval)开始在贝诺杰地区开展勘查活动,勘探目标是斑岩型铜钼矿床,但在后期却发现了具有经济价值的稀土矿床。1987~1991年,赫克拉矿业公司(Hecla)在该区的勘探工作圈定了430万吨的稀土资源量,稀土平均品位3.79%(不符合NI43-101标准)。2003年,稀有元素资源公司(Rare Elements ResourcesLtd.)通过旗下子公司获得该区100%矿权权益,并在2004~2008年间开展了针对该区稀土矿床的勘探和选冶研究,2009年4月公布了符合NI43-101标准的储量技术报告。综合该区稀土矿的勘探数据,采用1.5%REO为边界品位,目前在该区圈定推断资源量980万吨,其中氧化带矿石量456万吨,过渡带和非氧化带矿石量526万吨,稀土氧化物平均品位4.1%,折合稀土金属量36.3万吨。贝诺杰稀土矿体赋存在碳酸岩细脉群或碳酸岩岩墙中,地表氧化带厚约90~180米,主要由风化的含铁锰氧化物和稀土氧化物的岩体组成,向下为原生的含稀土碳酸岩体,稀土元素主要赋存在磷锶铬矿、氟碳铈矿和氟磷钙铈矿等矿物中。稀土配分以轻稀土为主,其中镧、铈、镨、钕和钐五种稀土元素氧化物占稀土总量的98%左右。与其它稀土矿床有所区别的是,由于含稀土的碳酸岩脉产在多阶段演化的碱性杂岩体中,因此贝诺杰地区的稀土矿床的周围赋存有一定规模的、具经济意义的、与碱性岩有关的金矿化。目前,稀有元素资源公司正在针对不同类型的矿石开展选冶试验。

 加拿大托尔湖稀土矿

 托尔湖(Thor Lake)稀土矿床位于加拿大的西北领地州麦肯锡矿区,在大斯勒乌湖东岸5公里,距西北领地州首府耶洛奈夫城100公里。最初,加拿大地质调查局在1937~1938年曾在该区开展地质填图工作。1976年,海伍德资源公司(Highwood Resources Ltd.)在该区开展铀矿勘查时,发现了大规模的稀有金属和稀土矿化现象,其后断断续续有一些矿业公司开展勘探活动。2005年,阿瓦隆稀有金属公司(Avalon Rare ElementsInc.)获得托儿湖稀土项目100%权益,在对以前的钻探样品重新取样分析的同时,2007~2008年开展了新一轮的勘探活动,并开展了小规模的冶金试验。目前,在托尔湖稀土项目42平方公里的面积内已经圈定6个稀有-稀土金属矿区,分别富集稀土、钇、钽、铌和锆等金属。其中,勘探程度较高的矿区有两个:Lake区和T区。稀土-稀有金属矿体赋存在碱性正长岩和花岗岩的次生蚀变带内,矿石矿物有褐钇铌矿、锆石、褐帘石、独居石和氟碳铈矿等。2008年,阿瓦隆稀有金属公司委托Wardrop工程咨询公司对Lake区的勘探资料进行总结并编制符合NI43-101标准的资源量评估报告。2009年3月发布估算报告,以1.6%REO为边界品位,Lake区拥有控制+推断级别资源量6521万吨,稀土氧化物平均品位2.05%,折合稀土金属量133万吨,其中重稀土氧化物占全部稀土氧化物的15%左右。阿瓦隆稀有金属公司目前已获得托尔湖项目的环境影响评价批准,并委托有关咨询公司开展项目环境影响评价,预计在2009~2010年完成预可行性研究。

 加拿大霍益达斯湖稀土矿

 霍益达斯湖(Hoidas Lake)稀土矿床位于加拿大萨斯喀彻温省北部铀城以北50公里。上世纪50年代,该区曾当作铀矿稀土生产车间一角勘探,直到1999年,才在该区发现稀土矿床。目前,加拿大大西矿物公司(GreatWestern Minerals Group Ltd.)拥有该区100%权益。截至2008年上半年,大西矿物公司已经施工了大约15000米钻探,揭露矿体长超过1000米,倾向延深350米以上,厚3~12米,矿体两端和深部延伸都未封闭。稀土金属主要赋存在磷灰石、褐帘石等矿物中。2007年,大西矿物公司委托Wardrop工程咨询公司对霍益达斯稀土项目开展预可行性研究。截至2007年底的钻孔数据,以1.5%REO为边界品位,该项目已获得探明+控制级别资源量115万吨,平均品位2.36%REO,推断级别资源量37万吨,平均品位2.15%REO,共含稀土氧化物金属量3.5万吨(符合NI43-101标准)。大西矿物公司计划在2009年完成可行性研究和环境影响评价报告,2010~2011年开始工程设计和进行建设,2012年投产,设计日处理矿石能力500吨,矿山寿命20年。与其它原料矿业公司不同的是,大西矿物公司采用经营矿山产品到稀土终端产品的商业运营模式,在英国和美国设有稀土产品加工厂,生产镍氢电池用的合金粉和钐钴磁性体。

 澳大利亚韦尔德山稀土矿

 韦尔德山(Mt Weld)稀土矿床位于澳大利亚西澳大利亚州拉沃顿镇南35公里。该区稀土矿体在风化的圆形碳酸岩体内,稀土矿物主要为假象独居石,同时伴生钽、铌等稀有金属。韦尔德山圆形碳酸岩构造于1966年开展航空磁测时被发现,随后有多家矿业公司在该区开展不同规模的勘探活动,目标矿种有磷、稀土、钽、铌和铀等。2000年,澳大利亚莱纳公司(Lynas Corporation)获得韦尔德山矿权权益,并于2002~2008年对韦尔德山的稀土和稀有金属开展了补充勘探、资源评价和矿石选冶试验。根据莱纳公司网站公布的数据,以4%REO为边界品位,韦尔德山中央稀土区共圈定探明+控制级别的资源量620万吨,推断级别资源量150万吨,稀土氧化物平均品位11.9%,折合稀土金属量92万吨。2008年,莱纳公司委托澳大利亚矿山设计和开发公司对韦尔德山中央稀土区进行露天采矿设计和优化,并于2008年6月开展了第一阶段采矿活动,共采出矿石77万吨,平均品位15.4%REO。莱纳公司计划在韦尔德山矿山建设选矿厂,选出40%REO的精矿运往设在马来西亚关丹市的稀土分离厂冶炼。稀土分离厂一期设计规模为年产稀土氧化物10500吨,二期扩建至21000吨/年。但由于金融危机,造成莱纳公司融资失败,目前选矿厂和分离厂项目建设都已搁置。

 澳大利亚诺兰稀土矿

 诺兰(Nolans)稀土矿床位于澳大利亚北领地州艾丽思斯普瑞斯城北130公里。该矿床不仅含稀土矿,还伴生磷和铀。矿体产在变质的花岗岩体中,平面上呈扁平状,倾向北北西,倾角65~90度,厚75米。矿石矿物主要为富钍独居石和含氟的磷灰石。该矿床为澳大利亚上市公司阿拉弗拉资源有限公司(ArafuraResource Ltd.)所有。根据公司2008年经营报告披露的数据,该矿床拥有探明+控制+推断三级资源量30300万吨,REO平均品位2.8%、P2O5平均品位12.9%、U3O8平均品位200克/吨,折合稀土金属量848000吨、磷390万吨、铀6038吨(均以氧化物计)。2007年10月,阿拉弗拉资源公司完成了项目的预可行性研究工作,2008年建设中试厂,并开展分离试验流程设计。预可行性研究计划项目年产2万吨REO、8万吨P2O5、33万磅U3O8和40万吨CaCl2。目前,阿拉弗拉资源有限公司已委托有关咨询公司开展项目银行可融资级别的可行性研究工作,并计划在2011年开始项目建设,2012年投产。由于金融危机影响,项目融资出现困难。2009年6月7日,中国华东有色地质勘查局所属的江苏华东有色金属投资控股公司以2294万澳元成功收购阿拉弗拉资源有限公司25%的股权。

 其他国家的稀土矿

 除了美国、加拿大和澳大利亚等国外,俄罗斯、越南等国也发现有大型稀土矿床。印度的稀土矿床大都产在海滨砂矿和内陆砂矿中,以独居石矿为主。巴西也是生产稀土矿的国家之一,19世纪末就曾经开采其东部沿海的独居石砂矿并供应给德国,现在仍然是世界稀土原料市场的供应商之一。东南亚的马来西亚、菲律宾、印度尼西亚等国也生产少量的海滨独居石砂矿。


我的更多文章:

0

阅读 评论 收藏 转载 喜欢 打印举报
已投稿到:
前一篇:人与电
  • 评论加载中,请稍候...
发评论

       

    验证码: 请点击后输入验证码 收听验证码

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

    < 前一篇人与电
      

    新浪BLOG意见反馈留言板 不良信息反馈 电话:4006900000 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有