加载中…

加载中...

个人资料
蒋子刚与发明
蒋子刚与发明 新浪个人认证
  • 博客等级:
  • 博客积分:0
  • 博客访问:41,777,381
  • 关注人气:5,988
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
相关博文
推荐博文
谁看过这篇博文
加载中…
正文 字体大小:

[转载]水中千里眼-声呐

(2020-07-18 15:02:15)
标签:

转载

分类: 数据_资料_学术
原文地址:水中千里眼-声呐作者:老百科

1827年左右,瑞士和法国的科学家首次相当精确地测量了水中声速,约为1500米/秒。1912年“巨人”号客轮同冰山相撞而沉没,促使一些科学家研究对冰山回声定位,这标志了水声学的诞生。美国的费森登设计制造了电动式水声换能器,1914年就能探测到两海里远的冰山。1918年,朗之万制成压电式换能器,产生了超声波,并应用了当时刚出现的真空管放大技术,进行水中远程目标的探测,第一次收到了潜艇的回波,开创了近代水声学,也由此发明了声呐。

声呐是英文缩写“SONAR”的音译,其中文全称为:声音导航与测距,Sound Navigation And Ranging”是一种利用声波在水下的传播特性,通过电声转换和信息处理,完成水中探测和通讯任务的电子设备。

在水中进行观察和测量,具有得天独厚条件的只有声波。这是由于其他探测手段的作用距离都很短,光在水中的穿透能力很有限,即使在最清澈的海水中,人们也只能看到十几米到几十米内的物体;电磁波在水中也衰减太快,而且波长越短,损失越大,即使用大功率的低频电磁波,也只能传播几十米。然而,声波在水中传播的衰减就小得多,在深海声道中爆炸一个几公斤的炸弹,在两万公里外还可以收到信号,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。 

声呐并非人类的专利,不少动物都有它们自己的“声呐”。蝙蝠就用喉头发射每秒10-20次的超声脉冲而用耳朵接收其回波,借助这种“主动声呐”它可以探查到很细小的昆虫及0,1mm粗细的金属丝障碍物。而夜蛾等昆虫具有“被动声呐”,能清晰地听到40m以外的蝙蝠超声,因而往往得以逃避攻击。然而有的蝙蝠能使用超出昆虫侦听范围的高频超声或低频超声,从而使捕捉昆虫的命中率仍然很高。

海豚,海豹、海狮和鲸等海洋哺乳动物都拥有声呐系统,它们能产生一种十分确定的讯号探寻食物和相互通讯。多种鲸类都用声来探测和通信,它们使用的频率比海豚的低得多,作用距离也远得多。海豚声呐的灵敏度很高,能发现几米以外直径0.2mm的金属丝和直径lmm的尼龙绳,能发现几百米外的鱼群,能遮住眼睛在插满竹竿的水池中灵活迅速地穿行而不会碰到竹竿;海豚声呐的“目标识别”能力很强,不但能识别不同的鱼类,区分开黄铜、铝、电木、塑料等不同的物质材料,还能区分开自己发声的回波和人们录下它的声音而重放的声波;海豚声呐的抗干扰能力也是惊人的,如果有噪声干扰,它会提高叫声的强度盖过噪声,以使自己的判断不受影响;而且,海豚声呐还具有感情表达能力,已经证实海豚是一种有“语言”的动物,它们的“交谈”正是通过其声呐系统。尤其是仅存于世的四种淡水豚中最珍贵的一种-我国长江中下游的白鳍豚,它的声呐系统“分工”明确,有为定位用的,有为通讯用的,有为报警用的,并有通过调频来调制位相的特殊功能。解开这些动物声呐的谜,一直是现代声呐技术的重要研究课题。

声呐装置一般由基阵、电子机柜和辅助设备三部分组成。基阵由水声换能器以一定几何图形排列组合而成,其外形通常为球形、柱形、平板形或线列行,有接收基阵、发射机阵或收发合一基阵之分。电子机柜一般有发射、接收、显示和控制等分系统。辅助设备包括电源设备、连接电缆、水下接线箱和增音机、与声呐基阵的传动控制相配套的升降、回转、俯仰、收放、拖曳、吊放、投放等装置,以及声呐导流罩等。换能器是声呐中的重要器件,它是声能与其它形式的能如机械能、电能、磁能等相互转换的装置。它有两个用途:一是在水中发射声波,称为“发射换能器”,相当于空气中的扬声器;二是在水中接收声波,称为“接收换能器”,相当于空气中的传声器(俗称“麦克风”或“话筒”)。换能器在实际使用时往往同时用于发射和接收声波,专门用于接收的换能器又称为“水听器”。换能器的工作原理是利用某些材料在电场或磁场的作用下发生伸缩的压电效应或磁致伸缩效应。

某些晶体,当沿着一定方向受到外力作用时,内部会产生极化现象,使带电质点发生相对位移,从而在晶体表面上产生大小相等符号相反的电荷;当外力去掉后,又恢复到不带电状态。晶体受力所产生的电荷量与外力的大小成正比。这种现象叫压电效应。反之,如对晶体施加电场,晶体将在一定方向上产生机械变形;当外加电场撤去后,该变形也随之消失。这种现象称为逆压电效应,也称作电致伸缩效应。 

能产生压电效应的晶体就叫压电晶体。水晶(α-石英)是一种有名的压电晶体。常见的压电晶体还有:闪锌矿、方硼石、电气石、红锌矿、GaAs、钛酸钡及其衍生结构晶体、KH2PO4、罗息盐、食糖等。

磁致伸缩效应(英语:magnetostrictive effect)指的是对软磁体进行磁化后,其形状、大小会发生变化的物理现象,该现象在19世纪中叶被人们发现。磁致伸缩现象具有各向异性。当长度为L的磁性材料在磁化方向上的长度变化为ΔL时,磁致伸缩率可表示为:λ=ΔL/L。由于磁致伸缩率一般在10-5以下,所以对磁致伸缩效应的应用远不如对压电效应的应用广泛。到20世纪60、70年代后,发现了伸缩率在10-3的超磁致伸缩材料。磁致伸缩效应才重新受到重视。 

自从发现物质的磁致伸缩效应后,人们就一直想利用这一物理效应来制造有用的功能器件与设备。为此人们研究和发展了一系列磁致伸缩材料:即:磁致伸缩的金属与合金,如镍(Ni)基合金(Ni, Ni-Co合金, Ni-Co-Cr合金)和铁基合金(如 F e-Ni合金, Fe-Al合金, Fe- Co-V合金等)和铁氧体磁致伸缩材料,如 N i-Co和 Ni-Co-Cu铁氧体材料等。这两种称为传统磁致伸缩材料,其λ值(在20—80ppm之间)过小,它们没有得到推广应用。

后来人们发现了电致伸缩材料,PZT压电陶瓷(锆钛酸铅):其中P是铅元素Pb的缩写,Z是锆元素Zr的缩写,T是钛元素Ti的缩写。PZT压电陶瓷是将二氧化铅、锆酸铅、钛酸铅在1200度高温下烧结而成的多晶体。具有正压电效应和负压电效应。简称为 P ZT或称压电陶瓷材料,其电致伸缩系数比金属与合金的大,约200~400ppm,它很快得到广泛应用。

近期发展的稀土金属化合物磁致伸缩材料,例如以T b-Dy— Fe化合物为基体的合金材料的λ达到1500~2000ppm,比前两类材料的λ大1~2个数量级,因此称为稀土超磁致伸缩材料。和传统磁致伸缩材料及压电陶瓷材料(PZT)相比,稀土超磁致伸缩材料是佼佼者,它具有下列优点:磁致伸缩应变λ比纯 N i大50倍,比PZT材料大5—25倍,比纯 N i和 Ni-Co合金高400~800倍;磁致伸缩应变时产生的推力很大,直径约l0mm的 Tb-Dy-Fe的棒材,磁致伸缩时产生约200公斤的推力。能量转换效率高达70%,而 Ni基合金仅有16%,PZT材料仅有40~60%;其弹性模量随磁场而变化,可调控;响应时间(由施加磁场到产生相应的应变λ所需的时间称响应时间)仅百万分之一秒,比人的思维还快;频率特性好,可在低频率(几十至1000赫兹)下工作,工作频带宽;稳定性好,可靠性高,其磁致伸缩性能不随时间而变化,无疲劳,无过热失效问题。

由于磁致伸缩材料在磁场作用下,其长度发生变化,可发生位移而做功或在交变磁场作用可发生反复伸张与缩短,从而产生振动或声波,这种材料可将电磁能(或电磁信息)转换成机械能或声能(或机械位移信息或声信息)。相反也可以将机械能(或机械位移与声信息),转换成电磁能(或电磁信息),它是重要的能量与信息转换功能材料。

海洋占地球面积的70%,海洋是人类生命的源泉,但是人类对海洋的大部分还缺乏了解。21世纪是海洋世纪,人类的生活、科学实验和资源的获得将逐渐的从陆地转移到海洋。而舰艇水下移动通讯、海水温度、海流、海底地形地貌的探测就需要声呐系统。声呐是一个庞大的系统,它包括声发射系统,反射声的接收系统,将回声信息转变成电信息与图像,以及图像识别系统等。其中声发射系统中的水声发射换能器及其材料是关键技术之一。

过去声呐的水声发射换能器主要用压电陶瓷材料(PZT)来制造。这种材料制造的水声换能器的频率高(20kHz以上),同时发射功率小,体积大,笨重。另外随舰艇隐身技术的发展,现代舰艇可吸收频率在3.0kHz以上的声波,起到隐身的作用。各工业发达国家都正在大力发展低频(频率为几十至2000赫兹),大功率(声源级约220dB)的声呐用或水声对抗用发射水声换能器,并已用于装备海军。低频可打破敌方舰艇的隐身技术,大功率可探测更远距离的目标,同时体积小,重量轻,可提高舰艇的作战能力。低频大功率是声呐用和水声对抗用发射水声换能器今后的发展方向。而制造低频大功率水声发射换能器的关键材料是稀土超磁致伸缩材料。发展稀土超磁致伸缩材料对发展声呐技术、水声对抗技术、海洋开发与探测技术将起到关键性作用。日本已用稀土超磁致伸缩材料来制造海洋声学断层分析系统 O AT (Ocean Acoustic Topography)和海洋气候声学温度测量系统 A TOC (The Acoustic Thermometry of Ocean climate)的水声发射换能器,其信号可发射到1000km的范围,用于测量海水温度和海流的分布图。

稀土超磁致伸缩材料在声频和超声技术方面也有广阔的应用前景。例如用该材料可制造超大功率超声换能器。过去的超声换能器主要是用压电陶瓷(PZT)材料来制造。它仅能制造小功率(≤2.0kW)的超声波换能器,国外已用稀土超磁致伸缩材料来制造出超大功率(6—25kW)的超声波换能器。超大功率超声波技术可产生低功率超声技术所不能产生的新物理效应和新的用途,如它可使废旧轮胎脱硫再生,可使农作物大幅度增产,可加速化工过程的化学反应。有重大的经济、社会和环保效益;用该材料制造的电声换能器,可用于波动采油,可提高油井的产油量达20%~100%,可促进石油工业的发展;用该材料制造的薄型(平板型)喇叭,振动力大,音质好,高保真。此外,用该材料可制造反噪声与噪声控制,反振动与振动控制系统。将一个咖啡杯大小反噪声控制器安装在与引擎推进器相连接的部件内,使它与噪声传感器联接,可使运载工具的噪声降低到使旅客感到舒服的程度(≤20dB)以下。

反振动与减振器应用到运载工具,如汽车等,可使汽车振动减少到令人舒服的程度。用稀土超磁致伸缩材料制造的微位移驱动器,可用于机器人、自动控制、超精密机械加工、红外线、电子束、激光束扫描控制、照相机快门、线性电机、智能机翼、燃油喷射系统、微型泵、阀门、传感器等等。有专家认为,稀土超磁致伸缩材料的应用可诱发一系列的新技术,新设备,新工艺。它是可提高一个国家竞争力的材料,是21世纪战略性功能材料。 

工程上常用磁致伸缩材料制成各种超声器件,如超声波发生器、超声接收器、超声探伤器、超声钻头、超声焊机等;回声器件,如声呐、回声探测仪,医用B超,彩超等。

声呐按工作方式可分为主动声呐和被动声呐;主动声呐技术是指声呐主动发射声波“照射”目标,而后接收水中目标反射的回波以测定目标的参数。大多数采用脉冲体制,也有采用连续波体制的。它由简单的回声探测仪器演变而来,它主动地发射超声波,然后收测回波进行计算,适用于探测冰山、暗礁、沉船、海深、鱼群、水雷和关闭了发动机的隐蔽的潜艇。

被动声呐技术是指声呐被动接收舰船等水中目标产生的辐射噪声和水声设备发射的信号,以测定目标的方位。它由简单的水听器演变而来,它收听目标发出的噪声,判断出目标的位置和某些特性,特别适用于不能发声暴露自己而又要探测敌舰活动的潜艇。 

 

0

  • 评论加载中,请稍候...
发评论

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有