加载中…
个人资料
上海探戈
上海探戈
  • 博客等级:
  • 博客积分:0
  • 博客访问:388,269
  • 关注人气:163
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
相关博文
推荐博文
谁看过这篇博文
加载中…
正文 字体大小:

Matlab曲线拟合工具箱CFTOOL实例解析

(2011-04-14 23:53:11)
标签:

matlab

向量

曲线拟合

函数

cftool

杂谈

分类: Matlab
 
1.打开CFTOOL工具箱。在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。
Matlab曲线拟合工具箱CFTOOL实例解析
2.输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:
x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];
y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278; 0.041803; 0.038026; 0.038128; 0.088196];
Matlab曲线拟合工具箱CFTOOL实例解析
 
3.数据的选取。打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。关闭Data对话框。此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
Matlab曲线拟合工具箱CFTOOL实例解析
 
Matlab曲线拟合工具箱CFTOOL实例解析
 
Matlab曲线拟合工具箱CFTOOL实例解析

    4.曲线拟合(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。在Fit Editor里面点击New Fit按钮,此时其下方的各个选框被激活,在Data Set选框中选中刚才建立的x-y数据组,然后在Type of fit选框中选取拟合或回归类型,各个类型的拟合或回归相应的分别是:
Custom Equations 用户自定义函数
Expotential e指数函数
Fourier 傅立叶函数,含有三角函数
Gaussian 正态分布函数,高斯函数
Interpolant 插值函数,含有线性函数,移动平均等类型的拟合
Polynomial 多项式函数
Power 幂函数
Rational 有理函数(不太清楚,没有怎么用过)
Smooth Spline ??(光滑插值或者光滑拟合,不太清楚)
Sum of sin functions正弦函数类
Weibull 威布尔函数(没用过)
Matlab曲线拟合工具箱CFTOOL实例解析
在这个Type of fit选框中选择好合适的类型,并选好合适的函数形式。于是点击Apply按钮,就开始进行拟合或者回归了。此时在Curve Fitting Tool窗口上就会出现一个拟合的曲线。这就是所要的结果。
在上面的例子中,选择sum of sin functions中的第一个函数形式,点击Apply按钮,就可以看见拟合得到的正弦曲线。
Matlab曲线拟合工具箱CFTOOL实例解析
5.拟合后的结果信息。在Fitting对话框中的Results文本框中显示有此次拟合的主要统计信息,主要有
General model of sin1:
....... (函数形式)
Coefficients (with 95% conffidence range) (95%致信区间内的拟合常数)
a1=... ( ... ...) (等号后面是平均值,括号里是范围)
....
Godness of fit: (统计结果)
SSE: ... (方差)
R-squared: ... (决定系数,不知道做什么的)
Adjusted R-squared: ... (校正后的决定系数,如何校正的不得而知)
RMSE: ... (标准差)
上面的例子中经过拟合得到的函数最后为
y=3.133*x^(-1.007)-0.004233
Matlab曲线拟合工具箱CFTOOL实例解析
6.拟合分析(Analysis)。
 
Matlab曲线拟合工具箱CFTOOL实例解析
 
Matlab曲线拟合工具箱CFTOOL实例解析
 
7.图片导出。另外要说的是,如果想把这个拟合的图像导出的话,在Curve Fitting Tool窗口的File菜单下选Print to Figure,此时弹出一个新的图像窗口,里面是你要导出的图像,在这个figure窗口的File菜单里再选Export,选择好合适的格式,一般是jpeg,选择好路径,点击OK就可以了。出来的图像可以在Word等编辑环境中使用,就不多说了。
要修改图像的性质,如数据点的大小、颜色等等的,只需要在对象上点右键,就差不多可以找到了。

0

阅读 评论 收藏 转载 喜欢 打印举报/Report
  • 评论加载中,请稍候...
发评论

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有