加载中…
个人资料
鲁名峰
鲁名峰
  • 博客等级:
  • 博客积分:0
  • 博客访问:325,668
  • 关注人气:172
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
相关博文
推荐博文
正文 字体大小:

化学学科的现状及基础化学教育改革问题

(2015-12-18 11:32:32)
标签:

科学家谈化学

分类: 教育教学

化学学科的现状及基础化学教育改革问题 

宋心琦 

一、化学学科现状简介

自1802年道尔顿提出原子假说,1811年阿伏加德罗又提出分子学说以来,化学一直在原子和分子学说的基础上发展着。1869年门捷列夫所发现的元素周期律及在此基础上构成的元素周期表,使化学从而成为一门有着严密体系的学科。由于当时对于原子和分子的结构理论还停留在假说的阶段,化学家的研究工作主要侧重于元素的发现、分析或分离组成复杂的样品的方法以及新化合物的合成,所以化学的传统定义中只强调合成和分析两个方面。这个传统在基础化学教育中至今仍然有着深刻的影响。20世纪物理学家对原子结构及有关分子、晶体结构的实验研究成果和以量子力学为代表的诸多理论研究成果,使晶体、分子与原子结构的测定结果和化学家为分子、晶体所设计和编制的化学式与结构式在元素论的基础上演化成为化学家的一种学科语言。在此基础上,合成和分析方法的设计与实践便从主要依靠化学家的个人经验和技术的方式转为同时在理论的指导下的半经验方式。化学学科发展的阶段特点在今天的化学教育体系和课程体系中都可以找到它的痕迹。这个事实说明,在考虑21世纪的化学教育和基础教育阶段的化学课程目标和内容时,不可不研究20世纪的化学现状,并对其在21世纪的发展前景作出合理的预测,至少也应该对21世纪初的化学学科特点作出有根据的预见和合理的分析。

化学学科的现状可以从理论和技术两方面对其目前的水平及问题作一简单扼要的介绍。

虽然发现元素的工作,早年是化学家和物理学家共同努力的一个领域,但是在元素周期表中的位置逐一被填满并发现天然存在的元素已经告罄之后,用核反应的方法制造人造元素的工作,几乎成了物理学家的专利。而以原子为基础的化学键理论的发展,深化了对分子结构(包括晶体和原子的其他聚集态)、性质及反应性能的了解,并唤起对分子及其聚集态体系功能的研究与开发的重视。因此,分子及其聚集态等逐步成为现代化学的主要研究对象。由于合成化学和分析方法的多年积累,加上检测和分离技术的进步,已经发现并确定了其组成和结构的化合物以及在实验室里合成出来的新化合物,到20世纪末将超过2 000万种(1999年12月已达到2 000万种),其中有一小部分已建成数据库,但目前数据库的使用率大约只有10%左右。

利用物理效应和计算机技术发展起来的多种谱学方法和技术,已经达到相当高的水平。例如,利用扫描隧道显微技术(STM),人们已经能够探测到原子或分子在固体表面上的排布规律,也可以探测到碱基对在DNA双螺旋中的排布情况。水平检出灵敏度达到10-1 nm的量级,垂直检出灵敏度达到10-2 nm的量级。在动力学过程中,谱学方法的分辨率已经可以满足由10-15 s到以d(日)为量级的从超快过程到与生物体系有关的极慢过程的研究。在有机合成方面,化学家在合成时似乎已经不再存在禁区,只要预先设定的化学式和结构式是“合理的”,合成的问题就仅在于方法和路线的选择,以及产率的高低了。借助于数据库和专家系统,结合已有的一些经验规律,计算机辅助设计的方法在药物化学及材料科学中已经取得很大的成绩。近几年来兴起的组合化学方法,通过把中等数学中的概率论及排列组合方法和反应试剂固定化技术结合起来,使具有预期药效或功能的化合物的合成与筛选的效率提高了几个量级。在研究对象方面,化学家的视野已大为扩展,由地球扩展到了其他星球和整个宇宙,由各种外场效应对化学反应的影响扩展到在无重力条件下的化学反应等等。这一切成就使得20世纪的化学家的目光更加敏锐和开阔,信心更为坚定,和其他学科之间的互相渗透、互相支持的自觉性也远非昔日可比。

但是,也应当看到,化学在融入其他学科的同时,存在着过分重视化学物质的合成技巧和它们的功能的偏向,以至于化学家的基础研究课题,大多是其他学科中的课题,如光合作用,生命起源,针对某种特殊疾病的有效药物等等。对于化学本身的基础研究课题反而被疏忽了。我们应当重视对其他学科领域及技术领域的积极参与,但是一门学科如果对本学科的基础理论不够重视,不能吸引优秀的研究人员来从事有关的研究工作,它就会失去活力,甚至于失去存在的价值。近年来,化学学习热情的低迷不振,不能不认为与此有一定关系。只是因为化学人才在就业与薪金方面一直保持着相对于其他自然科学的优势,才使这个问题没有进一步激化而已。

20世纪50年代以后,由于量子化学理论和方法的进步与发展,对化学结构理论,特别是化学键理论的发展起了重要的促进作用,提高了化学家研究微观世界的能力。以物理学中的热力学和统计力学等为基础发展起来的化学热力学和化学统计力学等为化学提供了化学平衡理论、化学反应速率理论以及对给定体系的基本热力学性质的理论估算方法等等。但是应当认为,化学理论的发展速度相对于化学的整体发展速度而言,是不尽如人意的,对此本文不准备展开,只做一般性的讨论。

化学在这两个世纪里所形成的思维方式和评价体系,几乎没有太大的变化。化学家对化学是一门实验性科学的含义往往只从狭义上来理解,因而常常疏忽理性的思维,人们习惯于接受物理学的基本原理与定律,借用物理学和其他技术科学所提供的新技术,在这方面通常表现得非常开放和非常敏感,对于新技术的采用则更为明显。但是在另一方面,化学家很少对结合化学运动自身的更为基本的规律进行研究,却是一个不争的事实。也许门捷列夫的成功启发了一些科学家,认为用分类、统计和只针对系统内的某些性质找寻规律性(经验或半经验的)一类的方法,加上以实验数据(有限的)为依据,或以实验数据(有限的)为证据的做法,就成了化学是一门实验性科学的主要注解,同时可能成为化学家从化学教育中继承下来的,最传统的学习和研究方法。

化学运动有没有本身的规律?现在借用的物理学规律或原理是否真正揭示了物质化学运动的化学本质?这是21世纪化学家们应当认真思考的问题,也是化学教育改革中的一个关键问题。

先由常用的化学反应判据来看,热力学判据是:ΔG<0是体系中有关过程具有自发进行的趋势或蕴有自发进行的推动力的方向。(这个判据在微观世界中常以体系能量最低原则的形式出现。)热力学判据对于平衡体系,线性化学体系来说,显然是久经考验,不应怀疑的。但是热力学判据应用时的条件是必须先确定始态和终态(可以是虚拟的,但必须是确定的)。可是对于一个尚未研究过的化学过程,又如何能够确定它的终态呢?倘若一个体系在变化后可能达到的终态不止一个,热力学判据只能告诉我们,其中ΔG<0的数值最小的过程将是最可能的(但未必是最现实的)。例如在生物体的化学变化中,完全分解或氧化成CO2、H2O、N2等时的ΔG应是最小的,但是在很多情况下可能要经过很长的时间才能达到,通常并不是化学变化的第一选择。大自然里动植物化石的形成过程就是一个例子,农家肥的成熟过程也是一个例子。

现在已经知道,体系的变化往往要经过相当复杂的过程,形成许多所谓的反应通道,表现为产生多种副产物。这种情况在有机化学中十分普遍,而且分子的结构越复杂(分子包括的对称性元素越多),分子链越长,分支越多,结果就越复杂。副产物,异构体,交联率,分子量分布和介观物相的差异,原子簇组成的变化等等,皆由化学过程的复杂性所致,可以作为远非能量最低原理所能概括的重要例证。局部的能量或瞬时结构的判定与推测,现在仍然遵守着一个原则,即能量最低(相对于始态或另一个虚拟态)原则。在这个原则下设定的构象及其有限的变化(即准定态近似),是量子化学计算的基础。

物理运动中,过程方向是由种种定义明确、物理图像清晰的推动力所决定的,如万有引力、电性力、分子间作用力和核子力等。如果把它们直接用于化学过程时,就有着定义模糊,图像与实际体系并不完全符合的问题。这点在前面提到热力学问题判据时已谈到,不再重复。

例如,H2和O2本来是各自稳定存在的,当混合后经过引发会发生化学反应生成水,已是大家所熟知的事实。为何会发生反应?现在的化学理论提供的基本思路为:一是由过程的ΔG<0告诉我们,生成水后体系的自由能可以变得更低些;二是告诉我们在H2和O2获得活化能后,是如何发生键断裂和键生成过程的,由量子力学方法可以计算出过程中体系的势能变化(如势能面或势能曲线),可以讨论反应物分子在反应时应当取何种相对位置(如头对头或肩并肩等)对反应可能更为有利等等。

问题是,当H2和O2分子被混合在同一容器中后,体系是如何“知道”生成水后可以达到更加稳定的状态的呢?为什么不可以生成其他的物种,如H2O2等等?此处的“能量趋于更低”的推动力的物理图像是十分模糊不清的,因为“更低”在反应之前只是一个未经证明的假设。20世纪70年代一度引起轰动的伪科学事件──聚合水的发现,曾经使很多科学家陷入困境。他们之所以被误导是可以理解的,因为物理化学原理至今仍是以体系的内能和自由能的绝对值无法测定为基础的。人们相信水是组成为H2O的物质的稳定(最稳定的?)存在形式,不过是千百万次实践的经验的总结。我们相信它的正确,因为正面回答的统计值极高,但仍然是未经严格的理论证明过的一种经验总结。类似的怀疑在哲学上也是站得住的。我讲这些,无意为上述伪科学事件翻案,而是用来说明科学的发现和理论的发展应当是科学的思维方法和严格的科学实践(包括科学的实验与步骤严密的检验)的结合。古人说过:“学而不思则罔,思而不学则殆”,如果把其中的“学”字转义为“科学的研究工作”(着重于方法及程序的科学性),就可以成为现代科学工作者的座右铭了。

二、化学教育现状的分析

至于化学教育的现状则更值得认真思考和检讨。美国自1990年开始由美国化学会组织、美国自然科学基金会资助,由一个特别工作组以影响面最大的普通化学的改革方案为主要工作内容,进行了近5年的调查研究和研讨,继而分解成多个研究课题,内容涉及教学大纲(核心内容),教学法(如何使得学生感兴趣)以及教科书和多媒体软件包为代表的学习材料等。虽然公布的报告主要和大学化学教育有关,其中有很多论辩和提法对于中学化学教育改革也是可以借鉴的。

1.化学教学与教材中的“数学化”倾向问题

有一位有着数十年教龄的美国化学教授,在认真地审读了现行的化学教材又翻阅了大量非化学专业教材之后,发现有些化学计算的教学内容,如pH,溶度积,缓冲容量及其他一些复杂的化学平衡体系的有关计算等,不是根本没有必要,就是算出来的结果和实验测定结果相差悬殊,但是在化学教材中却是连篇累牍。为此他沉痛地呼吁道:“为什么还要这样来折磨我们的学生?”他所说的这种情况,在我国的大学及中学化学教学和教材中同样存在。由于化学学科本身还处在半经验化的阶段,亦即在解释化学现象时,至今还没有普适性很广的化学自身的规律。而在化学中应用很广的物理学定律,如热力学、量子力学的规律,以及能量守恒定律和质量守恒定律等,一般并不细致地考虑物质化学运动本身的特点。当我们在教学中不能把物质的化学运动与物理运动的学科差别把握好,并以此来激发学生的兴趣,和不能摆脱高考为便于评分而偏爱各种各样的计算的影响时,以数学计算来代替真正的理性化,就是可以理解的了。但是这样做的结果不仅掩盖了(至少是淡化了)化学本身的特点,同时也扼杀了学生学习化学的兴趣。我建议持有不同看法的朋友可以到科学院化学研究所或北京大学化学系去实地考察和调查一下,也许就会认同我的看法了。他们绝大部分的时间用于化学合成、结构测定和光谱解析以及研究新化合物的状态和性能等方面。除去做必要的量子化学计算外,利用光谱计算某些组分的含量和推导反应动力学方程,以及常规的分子量、化学式量和产率计算等等才是他们常做的计算工作。至于复杂体系的化学平衡状态,理论计算也许在书写论文时会有人加上一笔,在实际工作中,人们更相信用适当的实验方法所测定的结果,而不是计算的结果。所以,理论计算,尤其是复杂的理论计算对于化学工作者来说,也许在设计工作程序时有一定程度的参考作用,但通常并不是必需的,因为对于实际的复杂体系而言,可信度往往不高。由此应该想到,对于非化学专业的技术人员,这种理论计算训练的必要性就更值得怀疑的了。对于学生,要他们在基础化学学习期间,通过计算来了解化学和对化学产生兴趣,几乎是不可能的。近几年常听到不少有丰富教学经验的化学教师对于化学学习的过分“数学化”所抒发的忧虑,他们的忧虑无疑是正确的。不仅表明他们有很好的化学学科本身的修养,同时表明他们已认同了现代教育学理论的基本观点。但遗憾的是,他们却又同时有着一种无能为力的心态。

2.非化学专业化学教材体系的学科化和经院化倾向问题

人们也发现,大学非化学专业的普通化学乃至普通中学的化学教材和教学中都不同程度地存在着明显的学科化和经院化倾向问题。表现在过分强调化学学科体系的“完整性”和教学体系的理性化(如:以元素周期表为体系,以物质结构和化学平衡原理为主线等等),认为这是学习化学的最有效途径。在学时不足时,往往以删节与元素及化合物有关的内容(通常简称为描述化学)来满足前者对学时的要求。于是大一化学教材变成除去元素周期系外,有一种以化学热力学的结论(公式和简单的数学运算)代替对复杂多变的化学现象的实验研究和理论分析的纯理性倾向。化学热力学结论的可靠性自然是不必怀疑的,但是在应用时必须事先知道或者确定体系的起始状态和终了状态(如作用物和生成物),否则是无能为力的。而且对于丰富多彩的化学过程来说,它不能给出有关细节的任何资料,所以对于化学过程来说,它的作用相当于是一个“黑盒子”。

分子的化学结构在化学学科和化学教育中占有重要地位,它不仅代表了从化学式到化学结构式这一发展过程中人们对于化学物质认识的飞跃,而且对于初学者来说,更有使得分子由原来的“可以意会,不可言传”的微观粒子变得生动具体的作用。但是,近年来的化学教材所钟爱的却是以量子力学原理为基础(以一系列近似为前提)而推衍出来的一些结构理论和图形(又加上一系列近似),如电子云,钻穿效应,分子轨道理论等等一些只对学习化学专业的学生或有志于涉足化学领域的人才是重要的一些内容。不能否认,后面所提到的这些理论代表了近40年以来化学结构理论成就的一个侧面,但是对于初学者和非化学爱好者而言,却难免有“阳春白雪,和者盖寡”之嫌。很多学生在学了电子云的概念之后,常常反映有一种如同坠入万里云雾中的感觉,大概与此有一定的关系。

这种倾向在20世纪50年代出版的由鲍林(L Pauling)编著的普通化学中首开风气之先,到了20世纪70年代就成为一种主流。在美国的中学化学教材中,也有所反映。当时同时出版了两本指导思想和风格全然不同的中学教材,一本以热力学基础和初等化学结构理论为主线,同时设计了一套水平比较高的化学实验,书名为CBA(Chemical Bond Approach,可译作《化学键方案》);另一本和传统教材体系相差不多,但强化了学生实验,书名为Chemstudy(可译为《学习化学》)。CBA后来因为难度太大而停止试教,Chemstudy则一直在使用和修订着。当时国际上化学教材和教学思想中的这种学科化和经院化倾向,不仅影响了我国20世纪70年代后期的大学及中学的化学教材与教学,而且至今仍然难以摆脱,可能和我国理科教育中有一种偏爱理性内容的传统是分不开的。我无意一概反对科学教材和教学的理性化,只是认为对于像化学这样一门仍然以实验为主的科学,尤其是对于非化学专业的学生,以及基础教育阶段的中学生来说,不可不记取CBA和我们近20年来在化学教学中所积累的诸多经验和教训。大一化学和中学化学的教学实践经验证明,学生对化学的学习兴趣和热情随着课程的进行呈衰减趋势的百分比一直处于较高的水平,已是无可回避的严峻事实。令人吃惊的是,这种现象在某些著名大学化学系的低年级学生中也并非罕见。

3.基础化学的特点

关于基础化学的特点,是一个见仁见智的问题。此处仅就初等化学教学中涉及的几个问题提出几点看法。

化学的生动有趣与引人入胜之处在于,化学现象的复杂多变,而又如此的贴近生活,具有很强烈的实在感;化学通过实验(包括演示)和图形潜移默化地、巧妙地绕过了存在于微观和宏观世界之间认识上的鸿沟,使得物质的化学结构和化学变化成为可以用简明扼要的、有严格语法规则的化学语言来描述的、具体而且富有想象力的符号组合;通过从已知到未知的联想,物质的基本性质和反应的主要特点,可以或多或少地做到“尽收眼底”。固然从中所能提取的信息量的多少,可能因人因事而异,也与每个人的经验及水平有关,但是却可以顺利地用来进行学术交流(包括国际交流),其作用和物理公式、数学公式有异曲同工之妙。在显示所涉及的具体物质方面,则更有其特色。可是如果对具体的化学物质并无了解,又不进行实地观察或进行实验,就会成为一种也许只对考试有用的符号游戏,失去了对化学体系的实体感,也就体会不到学习化学的兴趣。如果观察和实验只局限于验证教材上对某个问题所做的解释或理论,而忽视了对化学体系的全面观察和分析,给学生的印象也许最多像一次有趣的魔术表演罢了。化学魔术和自然界的化学现象一样,如果只停留在对表面现象做一般性的观察的阶段,还不能认为是在学习化学(指化学学科),更不能成为学习化学的一种方法,至少是一种效率很低的方法。因为学生也许会萌生新奇感,但无法启动学生的探究欲和创新欲。而后者却是科学教育的主要功能之一。

化学的基点是为数有限的、大约100多个的化学元素。但是当元素间以不同种类、不同数量和不同结构组成分子时,其数量按理应是无限的(目前已经超过2 000万种以上,而且仍在以每年百万种的速度增长着)。在化学家看来,物质世界是由各式各样的分子和它们的因组分而异、因时而异或因地而异的聚集态所构成的。物质世界所发生的种种变化,是分子及其聚集态在所处条件下组成、结构与状态变化的宏观表现(这种看法显然对物质世界的多样性做了相当大的简化)。以浓度的概念为例,初等化学不仅介绍了浓度的定义,还从“浓度”这个角度为人们了解和调控某种或某些元素在体系中的“活性”,提供了从定性与定量两个方面加以理解的基础。人们常常听到的微量元素对于生命和健康有如何如何的作用的常识性介绍和厂家的宣传中的“微量”,也许可以算是与定性的“浓度”概念有关的一个例子。但是从化学的教学要求来看,它仅仅和小学课本中说的糖水或盐水浓度的水平基本相同。除去化学元素的名称和符号外,应当认为并没有涉及化学体系的本质。化学家普遍的认识大致可归结为,元素固然是一切化学物质的基础,但是在自然界中,元素只能以某种由自身(包括以单个原子存在的稀有气体和介稳状态的等离子体等)或与其他元素相结合的形式存在着。因此,它的化学行为(通常称为化学性质、物理性质和化学反应。前者以体系自身为主;后者对参加反应的所有物质应当首先同等对待,然后再区分主次)应当由体系中某种元素的存在形式或(与)其“载体”的浓度所决定。例如,氢气和氧气的混合物只是在氢气的体积比达到4.0%~74.2%时,才是平常所说的爆鸣气;在银盐溶液中加入氯化钠溶液,也只有当Ag+和Cl-的浓度(或二者浓度的乘积)达到一定的数值,才会出现AgCl的沉淀;元素锌和元素钙在人体健康中起作用时,不仅要和适当的蛋白质相结合,而且必须在极限浓度之内,否则反而会有不良影响;现在大城市每天发布的空气污染指数,也只有从这个角度去理解,才能正确理解它的意义。

但是,在化学教材和教学中,“精心设计,布满陷阱”的浓度计算题,可谓五花八门。姑且不论有很多题目的答案是否合乎实际,至少在学时和导向两个方面,对于学生结合浓度来加深对化学的理解的要求起了分散注意力的负面作用,却是无可推托的。何况,对于复杂体系中的某个或某几个组分的浓度,化学家最常用、同时被认为是最可信的方法是实际进行实验测定,而不是计算,化学是一门实验科学在此是体现得很具体的了。至于有关浓度对化学体系的性质和变化所起的作用的了解,其深度将因学生的学习阶段和兴趣而定,适度的运算因为有利于对浓度的作用留下定量或半定量的印象,对于大学化学和对化学有特殊兴趣的学生,也许是必要的(如有关简单体系化学平衡的计算等)。不过,我们应当牢牢把握住的是,化学至今仍然是一门实验科学,学习化学时可能要用到不同层次的数学,但是不可能通过,至少不能只通过数学来学习化学,而是由化学学科的性质和它的现状所决定的。

4.关于化学实验

化学是一门实验科学的提法,是由化学学科的研究方法和学科的成熟程度所决定的。直到现在,有关化学体系的性质、结构和变化规律性的取得,仍然主要靠系统的实验研究。由于科学实验通常是在经过严格控制和适当简化后的条件下进行的,所得结论不可避免地要受到有关条件的制约。当一些对体系能够产生重要影响的条件发生变化,而且超出某个限度时,就会再也观察不到原有的规律性(有时叫做非线性)。硫酸和金属间的反应就是大家所熟悉的一个例子。反应物的浓度、体系的温度、体系压强、催化剂及所用催化剂的种类等,是大家所熟悉的在化学实验中常用的一些条件。除此以外,电磁辐射(如紫外光、可见光、微波等)、超声、外电场(如电解、电镀等)以及近年来受到关注的磁场等,由于和高新技术、环境、材料及生命科学密切相关,也已成为研究某些化学体系的性质时常常考虑在内的条件。

但是在化学教学中,如何体现出化学是一门实验科学,则是一个应当实事求是地进行研究的问题。首先不应当理解为化学课程中的所有内容,至少是主要内容,都应当由学生亲手通过化学实验做一遍。不仅因为学时不允许,而且对于即使是化学系的学生,也是不必要的。学校教育的价值在于传授知识、培养能力和形成符合当时当地的道德观方面所表现出来的高效率和高质量。在教学中通过教师的组织和引导,学生可以在有限的时间内,受到前辈教育家和科学家们从人类几千年的文化中精心挑选和精心组织过的文化遗产和科学技术的教育与熏陶,从而迅速地成长。可以设想,即使是像氯的性质这样的内容,如果要求学生通过实验来全面了解它,就要从氯的存在、制备和与其他所有的已知化合物之间的反应等方面来进行实验,显然是不可能,也是不必要的。它也说明了通过教学过程来提高学生们对客观事物的认识水平时所用的方法,与研究人员通过研究工作来认识客观事物的途径和方法,可以是不同的。

既然如此,为何在所有的化学课程中都必须安排一定比例的实验课,而且有不断强化的趋势?化学实验课的作用与价值是什么?这又是一个多年来争论不休,见仁见智的问题。对此有如下的看法。

(1)化学(科学)实验教学的重要性

① 非常有利于培养与发展学生对科学技术的学习兴趣与能力。由于手脑并用,感知与思维的结合,理论和实践的结合,对学生能力的全面发展,创新意识的萌发和实践习惯的养成有极重要的作用。

② 如果能把青少年的科学实验的训练从狭义的实验室实践加以扩大,紧密联系生活、环境与社会,将有利于加深对人和自然环境及科学技术间关系的认识,培养和发展对科学技术的认识及兴趣。

③ 是课堂教学的重要补充。

④ 善于观察,勤于思考和学习,勇于实践,是新一代公民所应具有的基本素质。

(2)现状分析

① 目前,化学实验内容的选择和实验课的组织,有局限于大纲,局限于课堂,过分重视验证书本上的知识和基本操作的细节的特点。验证性实验固然有利于通过观察所认定的化学现象,起到加深记忆的作用。但是,现实情况是,由于为了使学生所观察到的现象与教材和教师所预定的完全一致,影响化学过程的因素被教材和教师严格地控制着,这时,实验的作用和看教师演示或多媒体演示相差不多,实验者体会不到化学现象是由反应条件所决定的这个最能体现化学特点的结论。在学生的印象里,只要反应体系给定了,产物或结论也就确定了,所有的一切和教科书上所写的并无不同,这样的化学实验,如何能够起到在化学教学大纲中所列举的如此众多的培养目标?在这种实验教学体系中,可以找到早年化学教育体系中以合成和分析为中心的痕迹。从现代化学教育目标来看,它已经陈旧了。和教科书中视为重点的化学结构理论和热力学理论之间的不匹配,也是很明显的。

②学生对化学实验课的热情和兴趣迅速下降,难以持久。能力得不到全面的培养和发展,科学实验有时也就变得有名无实了。我国化学教育界有人把实验的价值突出为“动手能力”的说法,从另一个侧面说明了这个问题。

③现行教学中的化学实验内容相当陈旧,有些实验基本上不能反映出科技和学科的发展现状。即使近年来在仪器设备的现代化方面有了较大的改善的地方,实验教学方法仍然有待改进。遗憾的是,由于在相当一部分学校的化学系中,或因为从事实验教学的教师缺乏长期不懈的科研工作条件,在实验体系及技术上缺乏储备,对化学和生活、环境及社会的关系缺乏深层次的体验;或因为提职政策导向等原因,使得从事实验教学和研究的教师的工作和研究成果得不到合理的评价,严重挫伤了改革的积极性。近期出版的新编教材在删节陈旧内容和充实化学新知识、新理论及介绍新领域等方面,都有了长足的进步,给人以耳目一新的感觉。但是相比之下,化学实验教学的基本思路和方法却远未跟上。当我们一再强调素质教育,强调在教育思想上要落实在以人为本,要启发和激发学生的创造性等等的时候,化学实验教学改革的落后,不能不引起我们的深思。

5.对化学教材的一点看法

21世纪化学与其他学科的关系将进一步得到发展。其中,和高新技术、环境、材料、信息及生命科学的关系将更为密切。从目前所掌握的资料来看,化学除去应为其他科学技术的发展提供具有特殊功能的新材料(如大规模集成电路所需的新型基体材料,特高密度的信息存储材料等),新化合物(如具有高选择性的药剂,高活性的仿生制剂等)以及高效的节能或蓄能化学体系等等之外,以化学运动本身规律性为基础的理论也将有突破性的进展。

由于时间分辨和空间分辨技术的发展,过去很多因为稳定性差而被排除在基础化学常识之外的物态,在其寿命内都可以像传统意义的稳定物态一样进行细致的研究,并在实际工作中加以应用。如自由基(在与生命过程、大气污染、高分子材料的老化与变性等有关问题中常用到的一个术语)、等离子体(曾被称为物质的第四态,已成为一种在加工工艺中和材料科学中使用的技术)、原子分子的电子激发态(很多电光源和激光光源的发光基质)、物质的介稳状态(胶体状态的延伸,如纳米材料,原子簇等)等,由于科学技术的发展,不仅能够对它们进行研究,而且在很多新工艺中已得到了应用。显然,物质的这些介稳状态应当作为21世纪人们的常识而进入化学教材之中。

基础教育阶段的化学教材将以更加贴近生活为特征,更着重于使人们理解化学的作用。化学不仅使人们能够更全面的认识客观世界,提高与改善人类和自然界之间的关系,使之更为和谐,而且是人类社会实现可持续发展目标的基础之一。化学基础知识及有关的科学思维与工作方法,将有利于某些创新理念的提出和实现。现行教材中的部分内容,或因为概念陈旧,或因为取材陈旧,或因为偏离基础教育阶段的教学目标应当予以删除或改为阅读材料。

多媒体技术、互联网络技术及其他信息技术的普及,化学数据库的充实与完善,同时也因为化学信息本身的极大丰富和化学基本理论的发展,使在化学教学与教材的主要任务中,学习和记忆某些“重要”化学知识,学会目前教材中那些所谓的基本操作一类的要求可能会遭到质疑。可以预见到,化学与所有其他的课程一样,在下个世纪中将会发生巨大的变化。但是由于缺乏系统的调查研究工作,目前无法对其作出精确的描述。

[本文原载《大学化学》2001年第1期]

0

阅读 评论 收藏 转载 喜欢 打印举报/Report
  • 评论加载中,请稍候...
发评论

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有