加载中…
个人资料
南冠彤
南冠彤
  • 博客等级:
  • 博客积分:0
  • 博客访问:415,028
  • 关注人气:59
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
相关博文
推荐博文
谁看过这篇博文
加载中…
正文 字体大小:

(转)C++信号&插槽库: C++ Signal/Slot Library

(2011-10-08 10:57:42)
标签:

杂谈

分类: CPP/C

C++信号&插槽库: C++ Signal/Slot Library

 

在此记录几个signal & slot 的实现库,如下:

1. QT
http://qt.nokia.com/
Qt是本人喜欢并熟悉的一个cross-platform库,用来创建跨平台的应用程序非常方便。不过这不是推荐的重点,因为没办法把它用到我们自己的非QT程序中。不过QT借助自己实现moc预处理器,将signal和slot的声明,完美的融合到了C++类声明中是非常不错的考虑。

2. boost::signal & boost::signal2
http://www.boost.org/
大名鼎鼎的boost库中的子库,拥有boost其它模版库的完美支持。boost库值得去研究一下,不过只打算在自己的程序中使用signal &slot机制,还是不推荐该库。

3. libsigc++
http://libsigc.sourceforge.net/
这个库已经用在了gtkmm中,与boost::signal类似。

4. sigslot
http://sigslot.sourceforge.net/
一个非常精简的signal & slot 实现库,整个库只有一个<< sigslot.h >>文件。

Signal & slot 比较好的实现了对象间的解耦,在GUI框架中应用广泛。C++中signal & slot的实现,几乎都用到了Template, Delegation,  Functor等。

 

 

 

 

1. 头文件
#include <signal.h>

2. 功能
设置某一信号的对应动作

3. 函数原型
void (*signal(int signum,void(* handler)(int)))(int);

   分解来看:
   typedef void (*sig_t) (int);
   sig_t signal(int sig, sig_t func);

   第一个参数是目标信号。func参数是一个指针,指向某个处理该信号的函数。这个处理信号函数带有一个int型参数,并应返回void。
   func参数也可以设定为下面的一些值:
   SIG_IGN: 如果func参数被设置为SIG_IGN,该信号将被忽略。
   SIG_DFL: 如果func参数被设置为SIG_DFL,该信号会按照确定行为处理。

4. sig信号的可能类型
1) #define SIGHUP 1

   SIGHUP是Unix系统管理员很常用的一个信号。许多后台服务进程在接受到该信号后将会重新读取它们的配置文件。然而,该信号的实际功能是通知进程它的控制终端被断开。缺省行为是终止进程。

2) #define SIGINT 2
   对于Unix使用者来说,SIGINT是另外一个常用的信号。许多shell的CTRL-C组合使得这个信号被大家所熟知。该信号的正式名字是中断信号。缺省行为是终止进程。

3) #define SIGQUIT 3
   SIGQUIT信号被用于接收shell的CTRL-/组合。另外,它还用于告知进程退出。这是一个常用信号,用来通知应用程序从容的(译注:即在结束前执行一些退出动作)关闭。缺省行为是终止进程,并且创建一个核心转储。

4) #define SIGILL 4
   如果正在执行的进程中包含非法指令,操作系统将向该进程发送SIGILL信号。如果你的程序使用了线程,或者pointer functions,那么可能的话可以尝试捕获该信号来协助调试。([color=Red]注意:原文这句为:“If your program makes use of use of threads, or pointer functions, try to catch this signal if possible for aid in debugging.”。中间的两个use of use of,不知是原书排版的瑕疵还是我确实没有明白其意义;另外,偶经常听说functions pointer,对于pointer functions,google了一下,应该是fortran里面的东西,不管怎样,还真不知道,确切含义还请知道的兄弟斧正。[/color])缺省行为是终止进程,并且创建一个核心转储。

5) #define SIGTRAP 5
   SIGTRAP这个信号是由POSIX标准定义的,用于调试目的。当被调试进程接收到该信号时,就意味着它到达了某一个调试断点。一旦这个信号被交付,被调试的进程就会停止,并且它的父进程将接到通知。缺省行为是终止进程,并且创建一个核心转储。

6) #define SIGABRT 6
   SIGABRT提供了一种在异常终止(abort)一个进程的同时创建一个核心转储的方法。然而如果该信号被捕获,并且信号处理句柄没有返回,那么进程不会终止。缺省行为是终止进程,并且创建一个核心转储。

7) #define SIGFPE 8
   当进程发生一个浮点错误时,SIGFPE信号被发送给该进程。对于那些处理复杂数学运算的程序,一般会建议你捕获该信号。缺省行为是终止进程,并且创建一个核心转储。

8) #define SIGKILL 9
   SIGKILL是这些信号中最难对付的一个。正如你在它旁边的注释中看到的那样,这个信号不能被捕获或忽略。一旦该信号被交付给一个进程,那么这个进程就会终止。然而,会有一些极少数情况SIGKILL不会终止进程。这些罕见的情形在处理一个“非中断操作”(比如磁盘I/O)的时候发生。虽然这样的情形极少发生,然而一旦发生的话,会造成进程死锁。唯一结束进程的办法就只有重新启动了。缺省行为是终止进程。

9) #define SIGBUS 10
   如同它的名字暗示的那样,CPU检测到数据总线上的错误时将产生SIGBUS信号。当程序尝试去访问一个没有正确对齐的内存地址时就会产生该信号。缺省行为是终止进程,并且创建一个核心转储。


10) #define SIGSEGV 11
   SIGSEGV是另一个C/C++程序员很熟悉的信号。当程序没有权利访问一个受保护的内存地址时,或者访问无效的虚拟内存地址(脏指针,dirty pointers,译注:由于没有和后备存储器中内容进行同步而造成。关于野指针,可以参见http://en.wikipedia.org/wiki/Wild_pointer 的解释。)时,会产生这个信号。缺省行为是终止进程,并且创建一个核心转储。

11) #define SIGSYS 12
   SIGSYS信号会在进程执行一个不存在的系统调用时被交付。操作系统会交付该信号,并且进程会被终止。缺省行为是终止进程,并且创建一个核心转储。

12) #define SIGPIPE 13
   管道的作用就像电话一样,允许进程之间的通信。如果进程尝试对管道执行写操作,然而管道的另一边却没有回应者时,操作系统会将SIGPIPE信号交付给这个讨厌的进程(这里就是那个打算写入的进程)。缺省行为是终止进程。

13) #define SIGALRM 14
   在进程的计时器到期的时候,SIGALRM信号会被交付(delivered)给进程。这些计时器由本章后面将会提及
的setitimer和alarm调用设置。缺省行为是终止进程。

14) #define SIGTERM 15
   SIGTERM信号被发送给进程,通知该进程是时候终止了,并且在终止之前做一些清理活动。SIGTERM信号是Unix的kill命令发送的缺省信号,同时也是操作系统关闭时向进程发送的缺省信号。缺省行为是终止进程。

15) #define SIGURG 16
   在进程已打开的套接字上发生某些情况时,SIGURG将被发送给该进程。如果进程不捕获这个信号的话,那么将被丢弃。缺省行为是丢弃这个信号。

16) #define SIGSTOP 17
   本信号不能被捕获或忽略。一旦进程接收到SIGSTOP信号,它会立即停止(stop),直到接收到另一个SIGCONT
信号为止。缺省行为是停止进程,直到接收到一个SIGCONT信号为止。

17) #define SIGTSTP 18
   SIGSTP与SIGSTOP类似,它们的区别在于SIGSTP信号可以被捕获或忽略。当shell从键盘接收到CTRL-Z的时候就会交付(deliver)这个信号给进程。缺省行为是停止进程,直到接收到一个SIGCONT信号为止。

18) #define SIGCONT 19
   SIGCONT也是一个有意思的信号。如前所述,当进程停止的时候,这个信号用来告诉进程恢复运行。该信号的有趣的地方在于:它不能被忽略或阻塞,但可以被捕获。这样做很有意义:因为进程大概不愿意忽略或阻塞SIGCONT信号,否则,如果进程接收到SIGSTOP或SIGSTP的时候该怎么办?缺省行为是丢弃该信号。

19) #define SIGCHLD 20
   SIGCHLD是由Berkeley Unix引入的,并且比SRV 4 Unix上的实现有更好的接口。(如果信号是一个没有追溯能力的过程(not a retroactive process),那么BSD的SIGCHID信号实现会比较好。在system V Unix的实现中,如果进程要求捕获该信号,操作系统会检查是否存在有任何未完成的子进程(这些子进程是已经退出exit)的子进程,并且在等待调用wait的父进程收集它们的状态)。如果子进程退出的时候附带有一些终止信息(terminating information),那么信号处理句柄就会被调用。所以,仅仅要求捕获这个信号会导致信号处理句柄被调用(译注:即是上面说的“信号的追溯能力”),而这是却一种相当混乱的状况。)一旦一个进程的子进程状态发生改变,SIGCHLD信号就会被发送给该进程。就像我在前面章节提到的,父进程虽然可以fork出子进程,但没有必要等待子进程退出。一般来说这是不太好的,因为这样的话,一旦进程退出就可能会变成一个僵尸进程。可是如果父进程捕获SIGCHLD信号的话,它就可以使用wait系列调用中的某一个去收集子进程状态,或者判断发生了什么事情。当发送SIGSTOP,SIGSTP或SIGCONF信号给子进程时,SIGCHLD信号也会被发送给父进程。缺省行为是丢弃该信号。

20) #define SIGTTIN 21
   当一个后台进程尝试进行一个读操作时,SIGTTIN信号被发送给该进程。进程将会阻塞直到接收到SIGCONT信号为止。缺省行为是停止进程,直到接收到SIGCONT信号。

21) #define SIGTTOU 22
   SIGTTOU信号与SIGTTIN很相似,不同之处在于SIGTTOU信号是由于后台进程尝试对一个设置了TOSTOP属性的tty执行写操作时才会产生。然而,如果tty没有设置这个属性,SIGTTOU就不会被发送。缺省行为是停止进程,直到接收到SIGCONT信号。

22) #define SIGIO 23
   如果进程在一个文件描述符上有I/O操作的话,SIGIO信号将被发送给这个进程。进程可以通过fcntl调用来设置。缺省行为是丢弃该信号。

23) #define SIGXCPU 24
   如果一旦进程超出了它可以使用的CPU限制(CPU limit),SIGXCPU信号就被发送给它。这个限制可以使用随后讨论的setrlimit设置。缺省行为是终止进程。

24) #define SIGXFSZ 25
   如果一旦进程超出了它可以使用的文件大小限制,SIGXFSZ信号就被发送给它。稍后我们会继续讨论这个信号。缺省行为是终止进程。

25) #define SIGVTALRM 26
   如果一旦进程超过了它设定的虚拟计时器计数时,SIGVTALRM信号就被发送给它。缺省行为是终止进程。

26) #define SIGPROF 27
   当设置了计时器时,SIGPROF是另一个将会发送给进程的信号。缺省行为是终止进程。

27) #define SIGWINCH 28
   当进程调整了终端的行或列时(比如增大你的xterm的尺寸),SIGWINCH信号被发送给该进程。缺省行为是丢弃该信号。

28) #define SIGUSR1 29
29) #define SIGUSR2 30

   SIGUSR1和SIGUSR2这两个信号被设计为用户指定。它们可以被设定来完成你的任何需要。换句话说,操作系统没有任何行为与这两个信号关联。缺省行为是终止进程。(译注:按原文的意思翻译出来似乎这两句话有点矛盾。)

5. 例子
   5.1. Linux下的Ctrl+C在Windows下的实现一

   Linux下通常的做法:
   signal(SIGINT, sigfunc); // 设置信号
   void sigfunc(int signo)
   {
      ... //处理信号相关的操作
   }

   以下是Linux下的Ctrl+C在Windows下的实现
   #include <stdio.h>
   #include <windows.h>
   static is_loop = 1;
   // 捕获控制台 Ctrl+C 事件的函数
   BOOL CtrlHandler( DWORD fdwCtrlType )
   {
      switch (fdwCtrlType)
      {
     
      case CTRL_C_EVENT:
         printf("CTRL_C_EVENT \n");
         break;
      case CTRL_CLOSE_EVENT:
         printf("CTRL_CLOSE_EVENT \n");
         break;
      case CTRL_BREAK_EVENT:
         printf("CTRL_BREAK_EVENT \n");
         break;
      case CTRL_LOGOFF_EVENT:
         printf("CTRL_LOGOFF_EVENT \n");
         break;
      case CTRL_SHUTDOWN_EVENT:
         printf("CTRL_SHUTDOWN_EVENT \n");
         break;
      default:
         return FALSE;
      }
      is_loop = 0;
      return (TRUE);
   }

   int main(int argc, char *argv[])
   {
      printf("Set Console Ctrl Handler\n");
      SetConsoleCtrlHandler((PHANDLER_ROUTINE)CtrlHandler, TRUE);
      while (is_loop);
      return 0;
   }

   5.2.Linux下的Ctrl+C在Windows下的实现二
   #include <stdio.h>
   #include <windows.h>
   #define CONTRL_C_HANDLE() signal(3, exit)
   int main(int argc, char *argv[])
   {
      printf("Set Console Ctrl Handler\n");
      CONTRL_C_HANDLE();
      while (1);
      system("PAUSE");
      return 0;
   }

0

阅读 评论 收藏 转载 喜欢 打印举报/Report
  • 评论加载中,请稍候...
发评论

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有