加载中…
个人资料
秋风1266
秋风1266
  • 博客等级:
  • 博客积分:0
  • 博客访问:364,303
  • 关注人气:80
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
相关博文
推荐博文
正文 字体大小:

神奇的大脑记忆是如何形成的?

(2018-01-04 16:54:09)
分类: 图片影音
神奇的大脑记忆是如何形成的?
2017-03-25
生物谷
核心提示:大脑记忆是如何产生的?长期以来科学家们在孜孜不倦地深耕此项课题,也获取了不少研究成果。
  长期以来,很多科学家对大脑的研究非常痴迷,有些研究试图去解析引发多种大脑相关神经变性疾病的发病机理,比如阿尔兹海默氏症、帕金森疾病、精神分裂症等等,而有些研究人员则从更深层次对大脑结构和功能区域进行了探秘研究,从而来解读我们大脑记忆的形成机制。
神奇的大脑记忆是如何形成的?
脑部 头部_24511125_xxl
  很多人都有着快乐的童年记忆,当然也有着那些痛苦不堪不愿提及的伤心记忆,那么大脑中这些记忆到底是怎么形成的?又是如何扎根大脑让我们永生不忘呢?很多科学家们对此都有了更为深入的解释,本文中小编就对此进行了盘点,与各位一起学习!
  【1】神经元的相互协作对于短期记忆的作用
  新闻阅读:Brain cells show teamwork in short-term memory(大脑细胞在短期记忆中表现出团队合作精神)
  最近一项研究表明,我们大脑中神经元细胞是通过和谐协作,而非单独活动,从而能够有效促进短期记忆的维持
  这项研究打破了长久以来人们所认为的单独神经元储存记忆的观念。
  "这项研究表明,单个神经元本身并不会在大脑活动中储存信息,但它们能够通过与别的神经元的相互协作完成这一任务",来自西部大学的研究者Julio Martinez-Trujillo说道:"在这一发现的基础上,我们能够更好地理解大脑在提高或抑制工作能力方面的作用,而这一方面的研究能够帮助我们针对各种存在短期记忆问题的症状,例如阿兹海默症、精神分裂症、自闭症、抑郁、注意力不集中等等,起到有效的治疗效果"。
  工作记忆是人们学习、保持以及检索短期零散记忆的能力,例如我们去超市买东西时的对商品位置的记忆以及开车时对路线的记忆等等。
  【2】Nat Neurosci(自然神经科学):大脑长期记忆形成新机制
  doi:10.1038/nn.4505
  最近,科学家们发现了一种新的神经元细胞相互交流以调节学习以及长期记忆的方式。
  事实上,这一种久未被发现的新的大脑运作机制能够对我们理解大脑工作方式起到帮助作用,以及能够帮我们进一步理解神经推行性疾病,例如阿兹海默症等的发病机制。
  人类的大脑中含有数千亿个神经元细胞,每一个细胞与其它细胞之间都存在一万个左右的突触连接。而这些连接之间的信号强弱都取决于多种多样的大脑工作机制,而这些机制则是长久以来科学家们试图去解释的。
  直到如今,我们理解的最为清楚的,能够增强细胞间信号传递的机制之一就是LTP(long-term potentiation)。
  【3】Nat Neurosci(自然神经科学):科学家发现参与人类短期记忆形成的关键神经元
  doi:10.1038/nn.4509
  神经科学家们最近发现了参与人类大脑创建和维持短期记忆的过程。
  “这项研究首次清晰证明了人类脑细胞如何创建和唤醒短期记忆,对参与其中的过程和特定脑区进行证实是开发治疗记忆紊乱的有效方法的一个关键步骤。”文章作者Ueli Rutishauser教授这样说道。
  相关研究结果发表在国际学术期刊Natue Neuroscience上。
  该研究的结果表明当要求一个人记住一个物体或图片,并在之后重新回忆起来需要一种特定类型的神经元在几秒钟时间内保持活跃。
  这些发现揭示了一些关于人类大脑如何储存和维持短期记忆的重要新信息。短期记忆是在几秒到几分钟内记住主意、想法、图片和物体的一种能力,这种能力对于决策和心算来说非常重要。
  【4】eLife(生活):新研究揭示记忆存储的奥秘
  doi: 10.7554/eLife.21920
  美国TSRI研究所的科学家们进行了一项新研究,进一步了解了大脑如何储存记忆,相关研究结果发表在国际学术期刊eLife上。该研究首次证明相同的脑部区域既可以激活一种学习行为也可以抑制相同的行为。
  “我们从记忆中学习到将环境与行为关联在一起,因此在一种特定情境下我们的行为也会按照特定的方式来进行,”TSRI研究所的Nobuyoshi Suto教授这样说道。“这项研究提供了能够证明因果关系的证据,表明一个大脑区域可以储存不同记忆。”
  科学家们知道我们的记忆被储存在特定的脑部区域,但是关于一个单独的脑部区域是否可以储存控制相反行为的不同记忆存在一些争议。比如,储存红绿灯意义的记忆是否可以储存在同一个脑部区域?
  在这项新研究中,Suto等人检测了大鼠如何通过学习按下杠杆来喝到糖水,以及这些记忆的储存位置。
  【5】Nat Neurosci:科学家们找到记忆储存的新机制
  原始出处:Scientists have figured out how the brain makes new memories while keeping old ones
  每当工作繁忙的时候,我们都感觉自己的大脑在不断地排出旧的信息,以期能够容纳新的信息进来。然而,我们的记忆系统十分先进,它能够在不损坏已有记忆的同时高效地吸收新的记忆进来。
  研究者们最近开发出一个能够解释这一贯穿我们日常生活的现象背后的机制的模型。
  来自哥伦比亚大学的研究者们利用数学模型解释了不同的分子簇是如何串联在一起形成巨大的记忆储存系统的。
  他们认为,神经元之间的突触连接强度的变化,反映了新的信号进入使大脑储存记忆的方式。
  可以将其形象地描述为一系列的表,它们的开启或关闭指示这神经元突触之间的连接强度。
  但表盘只能够有开启或关闭两种形式,这就意味着其还存在局限性,不足以解释大脑储存信息的方式。
  【6】Nature(性质):科学家追踪到记忆形成新机制
  DOI: 10.1038/nature19766
  大脑通过突触的变化形成记忆。来自杜克大学等研究结构的研究人员进行了一项新研究发现了引起突触变化的意想不到的分子机制。相关研究结果发表在国际学术期刊Nature上,这些发现还对理解一些疾病如特定类型癫痫的发展带来了一些提示。
  在获得一段新记忆的时候,一些神经元之间的突触连接会得到加强。神经元负责接收信号的末端会变大。研究人员一直怀疑一种叫做TrkB的脑受体参与学习过程中树突棘的生长,新研究证实这个受体分子确实很重要,研究人员又进一步探索了这个受体如何发挥作用。
  研究中使用了一些关键技术,其中包括一项该研究小组开发的分子传感器用来追踪TrkB的活性,他们还用显微镜对活体小鼠脑组织区域的单个树突棘进行实时观察。
  研究人员利用谷氨酸作为化学信号刺激树突棘,模拟学习过程中发生的事情,发现谷氨酸能够引起树突棘的生长。而缺少了TrkB受体,树突棘在应答化学信号的时候不会生长。
  【7】Science(科学):大脑中记忆构建块被发现
  doi:10.1126/science.aaf3319
  法国艾克斯马赛大学的一组研究人员观察到小鼠大脑中存在记忆构建块。他们的论文发表在《科学》杂志上,研究人员描述了他们如何引起某些神经元变得兴奋。
  想要弄清楚哪种大脑细胞参与形成记忆是一项艰巨的任务,尽管研究人员通过研究表明,海马体是大脑的主要部分,主要用于处理信息,但直到现在人们还没有真正看到神经元水平的记忆形成机制。在这项新的工作中,研究人员认为通过激活小鼠海马体的神经元可以观察到神经元序列的展开。
  更具体地说,当神经元暴露在大量的钙离子指示剂时就会发出荧光,表明神经元已被激活。当小鼠在跑步机上活动时,研究人员能够监控多达1000个神经元的活性。以前的研究也发现,小鼠的大脑细胞会追踪小鼠活动的距离,在这种情况下,当小鼠在跑步机上活动时,它的一组神经序列就会像预测的那样被激活了。这就揭示了研究人员认为的记忆的形成。此外,研究者在小鼠休息后继续监视了同组细胞,发现相同序列的细胞被激活,好像小鼠大脑中的细胞活性被重新激活了。如果小鼠大脑在一段时间内处理这一大块数据,那么相比在最初的观察中神经序列的活动会更兴奋。
  【8】Science:科学家们发现了储存记忆的“房子”
  DOI: 10.1126/science.aaf3319
  科学家们第一次鉴定出了他们称之为可以储存记忆的"房子"。事实上,这是能够储存有关我们曾经以及现在的地理方位信息的神经元。
  随着这些特殊神经元的发现,我们有可能能够学习更多大脑记忆形成的机制。
  来自法国的研究者们向小鼠的神经元中导入一种荧光蛋白,这种蛋白质能够在细胞钙离子内流的时刻发亮,这能够指示神经元正在激活。
  当把小鼠放置于跑步台上时,神经元能够逐步地被激活,这能够指示他们跑步的里程。
  当小鼠休息时,神经元同样能够发光,但频率明显加快,而且发光的部位与奔跑时明显不同。
  【9】Science新研究为几十年争论提供新证据 找到记忆形成重要基石
  DOI: 10.1126/science.aad5252
  几十年来,科学家们对于快速眼动睡眠是否直接参与记忆形成争论不休。现在一项发表在国际学术期刊Science上的最新研究表明,快速眼动睡眠确实在记忆形成过程中发挥一定作用--至少在小鼠模型上确实是这样。
  这项研究由麦吉尔大学和伯尔尼大学的研究人员共同完成。该研究首次证明快速眼动睡眠对于小鼠正常的空间记忆形成过程具有非常重要的作用。
  之前大量研究使用传统实验方法都未能对快速眼动睡眠期的神经活动进行分离。而在这项最新研究中,研究人员使用了光遗传技术,该技术能够精确靶向神经元群体,通过光控制神经元活动。
  为了检测小鼠的长期空间记忆,研究人员对小鼠进行了训练,他们将一个新物体放在一个对照环境中,同时还有另外两个与新物体形状体积类似的已经被小鼠所熟悉的物体。研究人员发现小鼠在探索新物体的时候要花费更多时间,表明它们经历了学习和记忆的过程。当这些小鼠处于快速眼动睡眠期,研究人员利用光遗传技术关闭与记忆形成相关的神经元活动,进而研究快速眼动睡眠期是否参与记忆的形成和巩固。
  【10】Neuron:科学家们找到记忆形成的机制
  原文报道:Scientists get their first glimpse at how new memories are born
  神经学家们发现了大脑记忆形成的新机制,以及当这一过程紊乱时将会发生怎样的后果。
  该研究是由来自哥伦比亚大学脑行为研究所的Mortimer B. Zuckerman等人完成的,他们的研究对象是小鼠大脑中新形成的细胞。这种在已有神经回路的基础上产生新神经元的技术被称为“成体神经生成技术”。
  这篇文章的通讯作者,神经学助理教授Attila Losonczy解释了这一研究的意义:“我们的技术能够用来比较成体神经元与新生神经元在动物大脑中的差异。这一发现同时向大家揭示了成体神经生成技术在健康与疾病研究中的重要性”。
  研究者们重点研究的是一个叫做“齿状回”的大脑结构,这块非常小的区域藏在大脑的深处,因此十分难研究。而这一区域也是大脑中少数能够在出生以后继续生长新生细胞的地方。(大脑中大部分神经元在出生以前就已经发育好了)。
  【11】Cell:科学家鉴别出大脑长期记忆背后潜在的生化机制
  doi:10.1016/j.cell.2015.11.020
  在假期里,我们常常会想起过去的记忆,同时创造新的记忆,但为何过去的有些记忆已经消失但有些人却会一直记住?近日,一项刊登于国际著名杂志Cell上的研究论文中,来自美国斯道尔研究所(Stowers Institute)的科学家就鉴别出了一种可能性的生化机制,即神经元可以通过机体短暂的经历来产生并且维持长效的记忆力。
  研究者Kausik Si表示,本文研究发现短期记忆和长期记忆都产生于神经元突触中,即神经元连接处,而短暂的经历—即我们记忆的来源,能够在突触连接的力量上产生一种持久性的改变;为了使得记忆持久不会“褪色”,突触的连接就必须保持强劲,此前研究人员发现,CPEB可以作为一种维持海参突触连接力量的关键突触蛋白,而海参是一种用于研究记忆的模式动物,随后的研究中研究者发现Orb2也可以作为果蝇机体中的类似CPEB突触蛋白的关键蛋白。
  【12】Cell(细胞):科学家阐明记忆形成的关键机制
  doi:10.1016/j.cell.2015.10.062
  最近,来自斯克里普斯研究所的研究人员通过研究发现,一对儿大脑蛋白的相互作用或许会对记忆力产生一种重要的效应,相关研究或为开发治疗神经变性疾病的新型药物提供思路;该研究发表于国际杂志Cell上,文章中研究者对两种受体进行了重要研究,其中一种是神经递质多巴胺,其主要参与学习、记忆、奖励激励行为、运动控制及其它功能,另外一种受体为胃饥饿素,其可以同食欲及能量的使用相互连接起来。
  研究者Roy Smith教授指出,在动物模型研究中我们发现,当两种受体相互作用时,胃饥饿素受体就会改变多巴胺受体的结构,同时改变其信号通路,这非常重要,因为许多临床药物都是基于此而开发出来的,比如对于精神分裂症而言,患者的依从性会因为反向的副作用而表现的较差,该研究或可利用神经元制剂来通过靶向作用胃饥饿素间接修饰多巴胺,从而降低潜在的副作用。
大脑记忆是如何产生的?操控记忆痕迹时代已不远
2018年01月03日
新浪科技
    在脑科学领域的飞速发展的今天,或许操控人类记忆痕迹的时代已经离我们不远了。在脑科学领域的飞速发展的今天,或许操控人类记忆痕迹的时代已经离我们不远了。
  新浪科技讯 北京时间1月3日消息,据国外媒体报道,什么是记忆?1904年,德国生物学家理查德·西蒙(Richard Semon)提出了一个观点,指出记忆的痕迹是由一组不连续的大脑细胞连接之后拼凑起来的。他将这种想象中的生理回路称为“engram”,即“记忆痕迹”。在之后的时间里,记忆痕迹在科幻小说和“山达基”(scientology)体系中一直有着顽强的生命力。
  然而,证实记忆痕迹的存在还需要等到后来光遗传学(optogenetics)技术的发展。正是有了用光激活的“镊子”,科学家才得以对记忆痕迹回路进行精细的剖析。2012年,日本生物学家利根川进利用光遗传学技术,在麻省理工学院的实验室里首次揭示了记忆痕迹的真实存在。
  在去年4月发表的一篇论文中,利根川进的实验室又揭示了记忆痕迹如何在大脑海马产生,然后上传、存储到大脑皮层的详细过程。对记忆保存细节的解析,为扭转记忆失败或记忆过于活跃提供了新的思路和方法。
  “在原理上,这项研究揭示了我们应该如何处理那些在创伤后压力症(PTSD)中变得过于活跃的细胞,”澳大利亚昆士兰脑神经科学研究所的主管Pankaj Sah说,“某种程度上,发现这些非常完整的记忆可以如此离散,实在是令人意外。”
  第一次有关人类记忆形成和储存的实验性证据要追溯到1953年。当时,27岁的美国人亨利·莫莱森(Henry Molaison,在医学界以H.M。知名)为了治疗癫痫症,切除了大脑中三分之二的海马体。令主持手术的外科医生感到震惊的是,这次手术摧毁了莫莱森产生新记忆的能力,而他原来的记忆则保留了下来。
  这场计划外的实验表明海马体是形成新记忆的必需结构,尤其是背景丰富、每天都会产生的“间歇性”记忆,比如今天早上你遛狗时所见到的一切。不过,这些细节丰富的记忆并没有储存在海马体中。随着时间推移,它们会被转移到大脑的外层——大脑皮层。在早前的研究中,如果对患者的大脑皮层进行电刺激,他们就会唤起特定的记忆。
  这些记忆的上传通常与信息的压缩有关,有点类似我们压缩电脑文件,以进行长期保存的方式。此前研究者认为,这一过程发生在数天时间内。这种粗线条的认识直到5年前才有所改变。当时,利根川进的实验室——由日本RIKEN脑科学研究所和麻省理工学院合作组建——利用先进的光遗传学技术,将几个近乎神话的观点付诸实践。其中之一便是理查德·西蒙的“记忆痕迹”。西蒙提出,一段记忆会在大脑中留下生理痕迹;而大脑在受到刺激时,会回放这段记忆。
  在西蒙的观点提出几十年之后,研究者才了解了神经元通过电脉冲传递信息的机制。此后,研究者破译了许多在神经元之间传递的电信号;并揭示了学习和记忆如何对应于神经元之间突触的加强。
  然而,还没有人能够将大脑中某一组特定神经元与某一段特定记忆对应起来。1999年,诺贝尔奖得主弗朗西斯·克里克(Francis Crick)把他的聪明才智转向了大脑谜题的破解中。他提出,如果想取得突破,或许应该用光脉冲来刺激活体动物的单个神经元。“这听上去似乎很难做到,”克里克写道,“但其实是可行的,分子生物学家可以设计出一种特定的细胞类型,使其对光敏感。”
  就在6年之后的2005年,斯坦福大学的神经生物学家爱德华·博伊登(Edward Boyden)和卡尔·代塞尔罗斯(Karl Deisseroth)就取得了连他们自己都感到惊喜的突破,把光遗传学技术变成了现实。他们第一次把绿藻所具有的光敏感通道(channelrhodopsin)蛋白表现在神经元里,发现可以用蓝光准确控制活化神经元的时间。
  研究者发现,他们可以用一个病毒作为载体,将一个光敏感通道基因插入单个神经元中。他们还确保了只有那些近期形成记忆的细胞能产生光开关基因;形成记忆的细胞会产生一种称为“c-fos”的蛋白质,因此改造后的基因只能在能产生c-fos蛋白的细胞里出现。
  2012年,利根川进的团队利用这一光遗传学技术展示了一段恐惧记忆痕迹的存在。一只小鼠被放置在一个墙壁图案和地板纹理都十分独特的“房间”里。无论什么时候把小鼠放进去,它都会受到一阵电刺激。于是,后来只要把它放进这个房间,它就会产生经典的恐惧反应。研究人员还识别出海马体的一组细胞会主动激活光开关基因,表明这些细胞与记忆的形成有关。
  为了证实这一点,科学家把一条光纤穿过海马体,对准这些细胞。当他们打开光刺激,即用节律性的蓝光刺激海马体时,小鼠就会出现恐惧反应,就像回放了一遍被放入“恐怖房间”的记忆。这是“记忆痕迹”——由数百个细胞组成的区域在受到刺激时会回放记忆——存在的第一个证据。
  在新的研究中,研究者希望观察小鼠海马体的记忆痕迹如何随时间推移而变化。已经有其他研究提出,大脑皮层的一小块特殊区域——前额叶皮质——可能是恐惧记忆保存的位置。因此,研究人员采用含有光开关基因的病毒感染前额叶皮质细胞。
  他们发现了一些有趣的结果。与之前一样,一旦小鼠对电刺激房间产生恐惧,那这段记忆就会被刺激海马体的蓝光激活并回放。令人惊奇的是,这段记忆还可以由光刺激前额叶皮质细胞而激活。因此,从结果来看,记忆痕迹似乎也同时上传到了前额叶皮质。“这很令人意外,”利根川进说,“因为这表明大脑皮层的记忆很可能是在第一天就产生了,而非以往认为的(在几天里)逐渐形成。”
  然而,当这些小鼠被放入电刺激房间,对记忆表现出恐惧时,位于前额叶皮质的那些细胞就变得沉寂了(通过检查分离脑组织的化学活跃性而知)。只是在几个星期之后,当小鼠再被放入电刺激房间时,这些细胞才又重新被激活。与此相反的是,此时海马体的记忆痕迹已经开始消退。
  因此,当涉及长期记忆的保存时,首先会在前额叶皮质形成一段静默的拷贝;在海马体的记忆痕迹被逐渐抹去的同时,这段记忆才被逐渐巩固下来。至于巩固长期记忆的因素是什么,论文第一作者北村隆(Takashi Kitamura)表示,这还需要进一步的研究才能确定。
  巩固记忆的另一个关键是前额叶皮质需要同时接收来自海马体和杏仁核的信息输入。杏仁核是大脑的情绪中枢。当研究人员切断其中任意一方的神经信号输入时(还是采用光控制技术),大脑皮层的记忆就无法巩固下来。
  那么,这项研究的结果对人类有什么帮助吗?尽管我们无法植入光控制开关,但通过植入微电极来开启或关闭大脑的特定区域还是可能的,这就涉及到一种被称为“脑深层刺激手术”(deep brain stimulation,DBS)的新技术——已经被用于治疗帕金森氏症等疾病。北村隆希望有一天能够用类似的技术来操纵大脑里的记忆痕迹,“但首先我们需要在小鼠身上把它们描绘出来”。
  考虑到脑科学领域的飞速发展,或许操控人类记忆痕迹的时代已经离我们不远了。
人类首次精确发现大脑记忆形成原理
2015-07-04
    目前,科学家首次精确发现人类大脑记忆是如何形成的。英国莱斯特大学一支研究小组能够探测到人们大脑记忆归档经历事件所激活的神经细胞。
    这项“特殊发现”可能有助于更好地解释记忆损失,以及研究新的方法治疗阿尔兹海默症和其它神经系统疾病。
    研究小组发现当新的记忆形成时,大脑神经细胞如何有区别地立即激活。莱斯特大学生物工程学讲师马蒂亚斯-艾森(Matias Ison)说:“我们假设我们能够看到大脑神经细胞激活时发生的变化,但令人惊奇的是,从某种意义上神经细胞可以非常沉默,也可以非常活跃,在精确的大脑学习时刻,可以出现大脑神经细胞活动性。”
    研究报告聚焦于大脑内侧颞叶的神经细胞,据悉,内侧颞叶与“事件记忆”密切相关。通常内侧颞叶负责大脑自觉回忆体验事件和场景情节,例如:在歌剧院遇到一位老校友等。
    在测试中,研究人员对测试者观看一些名人照片,其中包括:詹妮弗-安妮丝顿、克林特-伊斯威特和哈莉-贝瑞。之后再向他们呈现这些名人在不同位置的照片,例如:在艾菲尔铁塔、比萨斜塔和悉尼歌剧院。他们发现当测试者看到同一个人出现在另一个照片时会激活相同的神经细胞,这意味着研究人员能够实时观察测试者同一神经细胞产生新的记忆内容。
    莱斯特大学系统神经科学中心负责人罗德里戈-基安-季洛卡(Rodrigo Quian Quiroga)说:“这项研究结果表明,在形成新的记忆内容时神经细胞会在精确的时间产生激活,当看到詹姆弗-安妮丝顿站在艾菲尔铁塔时,神经细胞会立即激活,开始回忆之前曾看到过安妮丝顿的照片。”
    这对于理解人类现实生活中记忆形成具有至关重要的意义,科学家希望理解这种类型记忆的形成能够帮助患者摆脱某些脑神经失调疾病,例如:阿尔兹海默症。
有关大脑神经元的科普视频:http://v.qq.com/page/w/k/3/w0016dxyrk3.html

0

阅读 收藏 转载 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

新浪公司 版权所有