加载中…
个人资料
唐唐唐唐
唐唐唐唐
  • 博客等级:
  • 博客积分:0
  • 博客访问:219,839
  • 关注人气:32
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
相关博文
推荐博文
谁看过这篇博文
加载中…
正文 字体大小:

矩阵求导计算法则 例题

(2011-03-31 08:33:37)
标签:

矩阵

求导

计算

标量

向量

公式

教育

分类: others

 

求导公式(撇号为转置):

Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'

矩阵求导计算法则 <wbr>例题乘积的导数

d(f*g)/dx=(df'/dx)g+(dg/dx)f'

 矩阵求导计算法则 <wbr>例题

矩阵求导计算法则 <wbr>例题

矩阵求导计算法则 <wbr>例题

矩阵求导计算法则 <wbr>例题  



矩阵求导计算法则 <wbr>例题

于是把以前学过的矩阵求导部分整理一下:

1. 矩阵Y对标量x求导:

相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了

Y = [y(ij)]--> dY/dx = [dy(ji)/dx]

2. 标量y对列向量X求导:

注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量

y = f(x1,x2,..,xn) --> dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'

3. 行向量Y'对列向量X求导:

注意1×M向量对N×1向量求导后是N×M矩阵。

将Y的每一列对X求偏导,将各列构成一个矩阵。

重要结论:

dX'/dX =I

d(AX)'/dX =A'

4. 列向量Y对行向量X’求导:

转化为行向量Y’对列向量X的导数,然后转置。

注意M×1向量对1×N向量求导结果为M×N矩阵。

dY/dX' =(dY'/dX)'

5. 向量积对列向量X求导运算法则:

注意与标量求导有点不同。

d(UV')/dX =(dU/dX)V' + U(dV'/dX)

d(U'V)/dX =(dU'/dX)V + (dV'/dX)U'

重要结论:

d(X'A)/dX =(dX'/dX)A + (dA/dX)X' = IA + 0X' = A

d(AX)/dX' =(d(X'A')/dX)' = (A')' = A

d(X'AX)/dX =(dX'/dX)AX + (d(AX)'/dX)X = AX + A'X

6. 矩阵Y对列向量X求导:

将Y对X的每一个分量求偏导,构成一个超向量。

注意该向量的每一个元素都是一个矩阵。

7. 矩阵积对列向量求导法则:

d(uV)/dX =(du/dX)V + u(dV/dX)

d(UV)/dX =(dU/dX)V + U(dV/dX)

重要结论:

d(X'A)/dX =(dX'/dX)A + X'(dA/dX) = IA + X'0 = A

8. 标量y对矩阵X的导数:

类似标量y对列向量X的导数,

把y对每个X的元素求偏导,不用转置。

dy/dX = [Dy/Dx(ij) ]

重要结论:

y = U'XV= ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] =UV'

y = U'X'XU 则dy/dX = 2XUU'

y =(XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' +0 = 2(XU-V)U'

9. 矩阵Y对矩阵X的导数:

将Y的每个元素对X求导,然后排在一起形成超级矩阵。

10.乘积的导数

d(f*g)/dx=(df'/dx)g+(dg/dx)f'

结论

d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x (注意:''是表示两次转置)

 

 

矩阵求导 属于 矩阵计算,应该查找 Matrix Calculus 的文献:

http://www.psi.toronto.edu/matrix/intro.html#Intro

http://www.psi.toronto.edu/matrix/calculus.html

http://www.stanford.edu/~dattorro/matrixcalc.pdf

http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf

http://www4.ncsu.edu/~pfackler/MatCalc.pdf

http://center.uvt.nl/staff/magnus/wip12.pdf

0

阅读 评论 收藏 转载 喜欢 打印举报/Report
  • 评论加载中,请稍候...
发评论

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有