加载中…
正文 字体大小:

【16-39期VALSEWebinar活动】

(2016-11-28 16:00:41)
标签:

it

【16-39期VALSEWebinar活动】
报告嘉宾1:初晓 (The Chinese University of Hong Kong)
报告时间:2016年11月30日(星期三)上午10:00(北京时间)
报告题目:Structured feature learning for pose estimation
主持人:沈为(上海大学)

报告摘要:
In this paper, we propose a structured feature learning framework to reason the correlations among body joints at the feature level in human pose estimation. Different from existing approaches of modelling structures on score maps or predicted labels, feature maps preserve substantially richer descriptions of body joints. The relationships between feature maps of joints are captured with the introduced geometrical transform kernels, which can be easily implemented with a convolution layer. Features and their relationships are jointly learned in an end-to-end learning system. A bi-directional tree structured model is proposed, so that the feature channels at a body joint can well receive information from other joints. The proposed framework improves feature learning substantially

参考文献:
[1] Xiao Chu, Wanli Ouyang, Wei Yang, Xiaogang Wang. Multi-task Recurrent Neural Network for Immediacy Prediction. ICCV 2015
[2] Xiao Chu, Wanli Ouyang, Hongsheng Li, Xiaogang Wang. CRF-CNN: Modelling Structured Information in Human Pose Estimation.”NIPS, 2016
[3] Xiao Chu, Wanli Ouyang, Hongsheng Li, Xiaogang Wang. CVPR 2015..

报告人简介:
Xiao Chu is currently a final year Ph.D. student at the Chinese University of Hong Kong working on computer vision, advised by Professor Xiaogang Wang. Her research interest is in computer vision and machine learning, especially human pose estimation and human interaction analysis. She is a member of both Multimedia Lab and Image and Video Processing Lab. Before that, She received my B.E. degree from Shandong University, in 2013.

【16-39期VALSEWebinar活动】
报告嘉宾2:王鹏(UCLA)
报告时间:2016年11月30日(星期三)上午11:00(北京时间)
报告题目:CNN和图模型在多视觉任务融合的应用
主持人:王兴刚(华中科技大学)

报告摘要:
近年来,统一的深度学习已经涵盖了计算机视觉的多种任务,如分割、检测和深度估计等等。然而多种信息之间并不是独立存在的,而是相互影响和协调的。深度学习提供了一个高效而统一的框架,为我们进一步融合信息提供了基础。而经典的图模型天然是用来对因素之间的影响和一致性建模,从而获得更鲁棒的信息表达。本次报告将介绍如何进一步融合信息,利用CNN和图模型提升物体分割和图像三维估计的效果。

参考文献:
[1] Peng Wang, Xiaohui Shen, Bryan Russel, Scott Cohen, Brian Price, Alan Yuille, SURGE: Surface Regularized Geometric Estimation from a Single Image, NIPS 2016
[2] Peng Wang, Alan Yuille, DOC: Deep OCclusion Recovering From A Single Image, ECCV 2016.
[3] Peng Wang, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian Price, Alan Yuille, Joint Object and Part Segmentation using Deep Learned Potentials, ICCV 2015.
[4] Peng Wang, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian Price, Alan Yuille, Towards Unified Depth and Semantic Prediction from a Single Image, CVPR 2015.

报告人简介:
王鹏,北京大学本硕,UCLA博士,师从Alan Yuille教授(UCLA视觉识别与机器学习主任,霍金之徒)。先后在微软Media Computing、Adobe Imagination Lab、百度IDL和谷歌Machine Perception实习,发表了CVPR、ICCV、ECCV等顶级论文10余篇,获得多项专利。研究兴趣为机器学习方法,深度学习和图模型,计算机视觉,多信息融合等。


特别鸣谢本次Webinar主要组织者:
VOOC责任委员:沈为(上海大学)
VODB协调理事:张兆翔(自动化所),郑海永(中国海洋大学)


活动参与方式:
1、VALSE Webinar活动全部网上依托VALSE QQ群的“群视频”功能在线进行,活动时讲者会上传PPT或共享屏幕,听众可以看到Slides,听到讲者的语音,并通过文字或语音与讲者交互;
2、为参加活动,需加入VALSE QQ群,目前A、B、C、D群已满,除讲者等嘉宾外,只能申请加入VALSE E群,群号:279398311 。申请加入时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M
3、为参加活动,请下载安装Windows QQ最新版,群视频不支持非Windows的系统,如Mac,Linux等,手机QQ可以听语音,但不能看视频slides;
4、在活动开始前10分钟左右,主持人会开启群视频,并发送邀请各群群友加入的链接,参加者直接点击进入即可;
5、活动过程中,请勿送花、棒棒糖等道具,也不要说无关话语,以免影响活动正常进行;
6、活动过程中,如出现听不到或看不到视频等问题,建议退出再重新进入,一般都能解决问题;
7、建议务必在速度较快的网络上参加活动,优先采用有线网络连接。

0

阅读 评论 收藏 禁止转载 喜欢 打印举报
已投稿到:
  • 评论加载中,请稍候...
发评论

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 不良信息反馈 电话:4006900000 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有