加载中…
个人资料
梦中有条鱼060927
梦中有条鱼060927
  • 博客等级:
  • 博客积分:0
  • 博客访问:3,772
  • 关注人气:3
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
相关博文
推荐博文
谁看过这篇博文
加载中…
正文 字体大小:

正数和负数教学设计

(2019-04-04 09:02:32)
教学目标

1.使学生了解正数与负数是从实际需要中产生的;

2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;

3.初步会用正负数表示具有相反意义的量;

4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.

教学重点和难点

负数的意义.

课堂教学过程设计

一、从学生原有的认知结构提出问题

大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?

学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.

为了表示一个人、两只手、……,我们用到整数1,2,……

4.87、……

为了表示“没有人”、“没有羊”、……,我们要用到0.

但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.

二、师生共同研究形成正负数概念

某市某一天的最高温度是零上5,最低温度是零下5.要表示这两个温度,如果只用小学学过的数,都记作5,就不能把它们区别清楚.它们是具有相反意义的两个量.

现实生活中,像这样的相反意义的量还有很多.

例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.

和“运出”,其意义是相反的.

同学们能举例子吗?

学生回答后,教师提出:怎样区别相反意义的量才好呢?

待学生思考后,请学生回答、评议、补充.

教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5表示零下5,黑色5表示零上5;乙同学说,在数字前面加不同符号来区分,比如,5表示零上5,×5表示零下5…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.

现在,数学中采用符号来区分,规定零上5记作+5(读作正5)或5,把零下5记作-5(读作负5).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.

让学生用同样的方法表示出前面例子中具有相反意义的量:

高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.

三、运用举例 变式练习

例 所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:

此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.

课堂练习

任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:

正数集合:{ …},

负数集合:{ …}.

四、小结

由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0.

五、作业

1.北京一月份的日平均气温大约是零下3,用负数表示这个温度.

2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?

3.在下列各数中,哪些是正数?哪些是负数?

-3.6,-4,9651,-0.1.

4.如果-50元表示支出50元,那么+200元表示什么?

5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么?

6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?

7.一物体可以左右移动,设向右为正,问:

(1)向左移动12米应记作什么?(2)“记作8米”表明什么?

课堂教学设计说明

这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.

从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.

在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.同时,教师的语言要尽量儿童化.

第2课 有理数

素质教学目标

1.理解整数、分数、有理数、数集等概念。

2.掌握有理数的两种分类。

重点、难点

重点:会把所给的各数填入表示它所在的数集的圈里。

难点:掌握有理数的两种分类。

教学过程设计

一、复习提问

1、“一个数,如果不是正数,那么一定是负数”,这句话对不对?为什么?

2、引进负数以后,我们学过的数有哪些?

二、新授

引进了负数以后,我们学过的数就有:

正整数,如1,2,3,...;

零: 0;

负整数, 如-1,-2,-3,...;

正分数, 如, ,4.5(即);

负分数, 如-,,-0.3(即),....

正整数、零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数.

试一试:你能对以上各数作出一张分类表吗?

把一些数放在一起,就组成一个数的集合,简称数集.所有的有理数组成的 数集叫做有理数集.类似地,所有的整数组成的数集叫做整数集,所有的正数组成的数集叫做正数集,所有的负数组成的数集叫做负数集,如此等等.

例 把下列各数填入表示它所在的数集的圈子里:

-18, , 3.1416, 0, 2001, , -0.142857, 95%

正整数 负整数

整数集 有理数集


, 3.1416, -18, ,

2001, 95% -0.142857

正整数 负整数

-18,0,2001, -18, , 3.1416, 0, 2001,

, -0.142857, 95%

整数集 有理数集

三、练习

1. 请说出两个正整数, 两个负整数, 两个正分数,两个负分数.它们都是有理数吗?

2. 有理数集中有没有这样的数,它既不是正数,也不是负数? 如有,这样的数有几个?

3. 下面两个圆圈分别表示正数集合和整数集合,请在这两个圆圈内填入六个数,其中有三个数既在正数集合内, 又在整数集合内.这三个数应填在哪里? 你能说出这两个圆圈的重叠部分表示什么数的集合吗?

正数集 整数集

四、小结(提问式):

1.有理数按正负数,应怎样分?

2.有理数按整数、分数,应怎样分?

3.分类的原则是什么/

五、作业

课本习题2.1

0

阅读 评论 收藏 转载 喜欢 打印举报/Report
  • 评论加载中,请稍候...
发评论

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 电话:4000520066 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有