加载中…
正文 字体大小:

科技新闻--对抗灰尘的新工具

(2016-05-17 10:09:32)
标签:

微米

静电

壁虎脚

除尘科技

分类: 翻译

Yale Engineers Develop a New Tool to Fight Dust

耶鲁工程师开发了一种对抗灰尘的新工具

科技新闻--对抗灰尘的新工具

Microscopic images of silica dust particles lifted by micropillars, 50 micrometers in diameter. (Vanderlick Lab)

被微柱(直径50微米)吸起的二氧化硅灰尘颗粒显微图片。(万德里克实验室)

 

Inspired by gecko feet, Yale researchers have developed a promising tool in the war on dust.

受壁虎脚的启发,耶鲁的研究人员研发了一种有作为的、对抗灰尘的工具。

 

Micrometric and sub-micrometric contaminant particles — what most of us call “dust” — can cause big problems for art conservators, the electronics industry, aerospace engineers, and others. These nanoparticles can prevent a cellphone from working or rob the vitality of a painting’s colors.

微米和亚微米的污染颗粒(我们大多数人称之为“灰尘”)可能是艺术管理员、电子工业和航天工程师以及其他人的大麻烦。这些纳米颗粒能让手机停止工作或者使油画色彩失去活性。

 

Drawing from the forces of static cling and the science behind gecko feet, the lab of Yale School of Engineering & Applied Science Dean T. Kyle Vanderlick has developed a promising tool in the war on dust. The results appear in the journal ACS Applied Materials and Interfaces. Hadi Izadi, a postdoctoral associate, is the paper’s lead author.

借鉴静电吸附的力量和壁虎脚背后的科学,耶鲁工程与应用科学学校的迪安.凯尔.万德里克实验室开发了一种有作为的对抗灰尘的工具。研发成果在ACS应用材料和接口杂志上发表。哈迪.艾查迪,博士后,为该论文的第一作者。

 

Vanderlick’s lab, which focuses on thin films and surface properties, took on the dust problem shortly after Yale established art conservation labs at its Institute for the Preservation of Cultural Heritage (IPCH) at the Yale West Campus. Vanderlick said the project is particularly characteristic of Yale, where collaborations between disciplines are strongly encouraged.

专注于薄膜和表面性能研究的万德里克实验室在耶鲁建立艺术保护实验室(位于耶鲁西校区的文化遗产保护研究所IPCH)不久就开始研究灰尘的问题。万德里克说,该项目具有耶鲁的特别风格---学科之间的合作倍受鼓舞。

 

“This wouldn’t have happened without the art scientists and conservators at the IPCH working with the researchers in our lab,” she said.

她说,“没有IPCH的艺术科学家们和保护者们与我们实验室研究人员的共同工作是完不成该项目的。”

 

The lab worked with a number of Yale art conservators in developing the technology. Cindy Schwarz, assistant conservator of painting at the Yale University Art Gallery, said dust is particularly a problem for her when it comes to modern paintings that feature acrylic paint.

一些耶鲁的艺术管理员参与实验室的技术研发。辛迪.施瓦茨,耶鲁大学艺术画廊的油画助理管理员说,当丙烯酸颜料成为现代绘画特征时,对于她来说灰尘成了特别的问题。

 

“Acrylic paints are incredibly porous, so anything you’re putting on the surface could get into the pores, and then work from the insides of the pores to soften the paints,” Schwarz said, adding that the new technology has the potential to solve this long-standing problem.

施瓦茨说,“丙烯酸颜料超多孔,放置表面的任何东西都能进入孔中,然后从孔的内部软化颜料”;并补充新的技术将能解决这一老大难问题。

 

If dust particles are bigger than 10 micrometers, removing them can be achieved with minimal fuss, usually with an air jet or nitrogen jet. It’s a whole other world of trouble for particles less than 10 micrometers. There are plenty of methods of removal, but each has its drawbacks. Wet cleaning is limited in its ability to remove particles, and can possibly damage the object being cleaned. In recent years, the electronics industry and art conservators have turned to dry cleaning techniques, such as lasers, micro-abrasive particles, and carbon dioxide snow jets. They remove dust well, but can be just as damaging to artwork as wet cleaning methods.

如果灰尘颗粒大于10微米,除去它们无需大动干戈,通常采用空气或氮气喷射。然而对于小于10微米的颗粒则是件极其麻烦的事。尽管有很多的去除方法,但各有其缺点。湿法清洗因能力受限难以除去颗粒,并有可能损坏被清洗的物体。近年来,电子工业和艺术管理员们已经转向干洗技术,如激光、微磨料颗粒和二氧化碳雪喷流。它们能清除灰尘,但是与湿洗方法一样可以损害艺术品。

 

The Yale researchers’ solution is deceptively simple. In the lab, Izadi holds up what looks like an ordinary plastic sheet. It’s actually an elastic and non-sticky polymer, polydimethylsiloxane (PDMS). Put it under a microscope, and you can see millions of tiny columns. Depending on the size of dust particles you’re removing, the pillars range from 2 to 50 micrometers in diameter — bigger particles require bigger pillars.

耶鲁研究人员的解决方法看似简单,在实验室里,艾查迪拿起一个看似普通的塑料片。实际上是一种弹性、非粘性的聚合物---聚二甲基硅氧烷(PDMS)。把它放在显微镜下面,你能看见是百万的微型柱。根据除尘颗粒的大小,可以选择直径2—50微米的微型柱;大颗粒需要较大的微型柱。

 

Izadi is very familiar with fibrillar structures and micropillars. His previous research explored the mystery of how geckos effortlessly stick to walls. It turns out that a lot of it has to do with electrostatic charges and the microscopic pillars on the pads on their feet. Applying some of this science to cleaning microparticles made sense, he said. “When you’re talking about dust, you’re talking about electrostatic charges.”

艾查迪非常熟悉显微结构和微型柱。他以前的研究是探索壁虎毫不费力地贴在墙上的奥秘。事实证明,这大都是与静电电荷和壁虎脚垫上的微型柱相关。把这些科学应用在清除微型颗粒很有意义;他说,“谈到灰尘时,实际上是在谈论静电电荷。”

 

The micropillar structures used for dust cleaning, however, differ from those of geckos in that they’re designed specifically not to stick. The PDMS polymer has minimal interaction with the substrate — whether it’s an iPhone or a sculpture — but it produces enough electrostatic charge to detach the dust particles.

不过,用于除尘的微型柱结构与壁虎的脚不同,它们是特别设计的,不粘。PDMS聚合物与基底的相互作用最小,无论是手机或是雕塑,它都能产生足够的静电电荷分离灰尘颗粒。

 

Once you match up a sheet with the appropriately sized pillars, cleaning is simply a matter of tapping the polymer on the surface. Particles absorbed by the polymer go around the pillars. Tests on various surfaces in the lab have shown total cleaning of silica dust particles and no damage to the surface.

只要有合适大小的微型柱,只需轻轻按一下聚合物的表面,就可以简单的除尘了;聚合物吸收的颗粒就到微型柱周围了。在实验室对不同表面的试验表明完全能清除了二氧化硅灰尘的颗粒而且没有损坏表面。

 

Although her lab is new to art preservation, Vanderlick noted, there’s much to engage researchers in her field.

“Dust is something at the nanometer level,” she said. “And there’s a lot of interesting thin film, surface, and interfacial physics associated with the preservation of art.”

虽然万德里克实验室是为保护艺术品新建的,她指出,在她的研究领域吸引了很多研究人员。她说,“灰尘是纳米级的物质”,“有很多有趣的薄膜,与保护艺术品存在着物理的接口。”

 

0

阅读 评论 收藏 禁止转载 喜欢 打印举报
已投稿到:
  • 评论加载中,请稍候...
发评论

       

    发评论

    以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

      

    新浪BLOG意见反馈留言板 不良信息反馈 电话:4006900000 提示音后按1键(按当地市话标准计费) 欢迎批评指正

    新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

    新浪公司 版权所有