加载中...

Standing on Shoulders of Giants.

Noeth
• 博客等级：
• 博客积分：0
• 博客访问：3,014
• 关注人气：4
• 获赠金笔：0支
• 赠出金笔：0支
• 荣誉徽章：

(2013-03-23 11:49)

转载

(2013-02-10 13:08)

文化

(2013-02-08 22:15)

转载

(2013-01-01 10:28)

杂谈

1118 (1+1+1)*8 111J (1+1)*(1+J)111Q (1+1)*1*Q 111K (1+1)*(K-1)1126 (1+1+2)*6
1127 (1+2)*(1+7)1128 1*(1+2)*8 1129 (1+2)*(9-1)112T (1+1)*(2+T)112J 1+1+2*J
112Q 1-1+2*Q By 112K 2*K-1-1 1134 (1+1)*3*4 1135 (1+3)*(1+5)1136 1*(1+3)*6
1137 1*(1+7)*3 1138 1-1+3*8 1139 (1+1)*(3+9)113T 3*(T-1-1) 113J (1+J)*(3-1)
113Q 1*(3-1)*Q 113K (1-3)*(1-K)1144 (1+1+4)*4 1145 1*(1+5)*4 1146 1-1+4*6
1147 1*4*(7-1) 1148 (1+1)*(4+8)1

(2012-07-27 09:09)

mathematica

mathematica代码1：Nordstrand[x_, y_,
z_] := (2 (4/3 x)^2 + 2 y^2 + z^2 - 1)^3 - (4/3 x)^2 z^3/10 -
y^2 z^3;
Kuska[x_, y_, z_] := (2*x^2 + y^2 + z^2 - 1)^3 - (1/10)*x^2*z^3 -
y^2*z^3;
Taubin[x_, y_, z_] := (x^2 + (3/2)^2 y^2 + z^2 - 1)^3 -
x^2 z^3 - (3/2)^2/20 y^2 z^3;
Trott[x_, y_, z_] :=
320*((x^2 + (3/2)^2 y^2 + z^2 - 1)^3 - (x^2) z^3 - (3/2)^2/20 y^2 z^3)

Manipulate[
Switch[type, 'Nordstrand',
ContourPlot3D[
Nordstrand[x, y, z] == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},
Boxed -> False, PlotPoints -> points, MaxRecursion -> max,
PlotRange -> All, ViewPoint -> {2, .1, .5}, BoxRatios -> {1, 1, 1},
Axes -> False, Mesh -> mesh,
ContourStyle -> Directive[col, Specularity[White, 10]],
Epilog ->
&nbs

(2012-04-04 17:43)

imo

(2012-04-04 17:24)

数学

---------------------
1. 设 √(5＋2√6)=√x+√y, x,y∈N+.

xy=6,

------------------------
2. 设 √(2√6＋6√7)=√x+√y, x,y∈N+.

------------------
1. 用半角公式求sin 15°.
sin 15°=√[(1-cos 30°)/2]
=√[(1-√3 /2)/2]
=(1/2)√(2-√3).

2√xy=√3.

=(√6-√2)/4.

------------------------

(1/2)√(2-√3)=(1/4)√(8-2√12)
=(1/4)√[(√6-√2)^2]
=(√6